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ABSTRACT :

Following the ideas presented in Francfort and Marigo [1], we assume that the cracking of a brittle body is
governed by a principle of least energy. By adopting Griffith’s assumption on the surface energy and by seeking
for global minimum, we showed that it is then possible to remedy to some major defects of the classical Griffith
theory based on the criterion of the critical energy release rate, in particular the issue of the crack initiation. We
can in this way completely solve various problems of failure of engineering structures, either by using analytical
methods (see [1], [2] and [3]) or by using an adapted numerical method (see [4] or [5]). In counterpart this new
formulation leads itself to a few but not admissible defects like undesirable size effects or the inability of the
material to sustain body forces. As a remedy, we simply propose to change the form of the surface energy by
adopting the idea of Barenblatt and to seek local minima. This paper is devoted to analyze the advantages of
these changes in a one dimensional context. It completes the previous published works of [6], [7] or [8] about
Barenblatt model.

1 Introduction

We consider a homogeneous bar of natural length L,
with cross-sectional area S, constituted of an elas-
tic breakable material with Young modulus E and
the breakable properties of which will be given be-
low. Before any loading, the bar is assumed to be
sound.

1.1 The loading cases.

We will consider three types of loading for the bar :

1. Prescribed displacements. The end x = 0 is
fixed, while the displacement of the end x = L
is prescribed to a value ±U , +U in the case of a
tensile test and −U in the case of a compressive
test, in any case the magnitude U increasing from
0.

2. Prescribed surface traction. The end x = 0
is fixed, while the end x = L is submitted to
either a tensile or a compressive force ±F , +F in

traction and −F in compression, the magnitude
F increasing from 0.

3. Prescribed body forces. The end x = 0 is
fixed, the end x = L is free and the bar is sub-
mitted to an uniform distribution of body forces
±g, +g in tension or −g in compression, the mag-
nitude g of which is increasing from 0.

1.2 The set of admissible displace-
ments.

To take into account the fracture of the bar, we must
consider a class of displacement fields larger than that
used in classical elasticity. In particular, when the
bar breaks at a point x, then the displacement u
may suffer a jump discontinuity [[u]](x) at this point.
Moreover since this point is not known in advance,
we must envisage displacement fields with jump dis-
continuities anywhere in the (closed) interval [0, L]1.

1The bar can break at one end, see for example the case of
prescribed body forces with Barenblatt’s model.



From a mathematical point of view, the most conve-
nient space of displacement fields in the present con-
text of fracture with free points of discontinuity is
the space BV (0, L) of function of bounded variation,
see for example [9] for an introduction to this space
and [10] for an application in 1D fracture mechan-
ics. However, in the present paper, for the sake of
simplicity of the presentation we will limit our atten-
tion to piecewise smooth displacement fields, that is
to functions u continuous and differentiable anywhere
but at a finite number of points of [0, L], their set is
denoted by S(u), where u is discontinuous. The clas-
sical derivative of u, defined in [0, L] \ S(u), will be
denoted by u′. Because of the possibility of a jump at
0 or L and in order to give a precise definition of the
boundary conditions, we must extend the domain of
definition of the fields to the whole real line. At this
effect, we put

u(x) = u−(0) = 0 for x < 0, (1)
u(x) = u+(L) for x > L, (2)

where u+(L) is equal to the prescribed displacement
U at the end in the first case of loading or is an arbi-
trary constant in the other ones. In order to preserve
the orientation of the matter and to prevent the inter-
penetration of the lips of the crack, we must prohibit
negative jumps and for that we introduce the follow-
ing inequality that any admissible displacement field
u must satisfy :

[[u]](x) ≥ 0, ∀x ∈ S(u). (3)

In the definition of a local minimum, the notion of
neighborhood of a displacement u appears. That
needs to equip this space of piecewise smooth func-
tions with a norm. Here we choose the following one

‖u‖ =
∫ +∞

−∞
|u′(x)|dx +

∑

S(u)

|[[u]](x)|. (4)

1.3 The surface energy.

1. Griffith’s model : If we adopt the idea of Grif-
fith, see [11], then the surface energy associated
to a crack, that is a surface across which the dis-
placement jumps, is proportional to the area of
the surface, the factor of proportionality denoted
by k being a characteristic of the material where
the crack is located. In the present 1D context,
the bar is assumed homogeneous and the surface
energy associated with an admissible displace-
ment field u reads as :

Es(u) =
∑

S(u)

kS = kS card(S(u)). (5)

2. Barenblatt’s model : As outlined by Griffith
himself, the form (5) of the surface energy is

valid from a physical point of view only when
the distance between the lips of the crack are
large with respect to the characteristic atomic
distance. In the spirit of what happens at an
atomic scale when atomic bonds break, we will
assume, following the idea of Barenblatt in [12],
that the surface energy depends on the value of
the displacement jump, starting from 0 and pro-
gressively growing to its effective Griffith’s value
k when the displacement jump becomes large
with respect to the characteristic atomic length.
Specifically, we assume in this model that the
surface energy takes the following form :

Es(u) =
∑

S(u)

Sκ([[u]](x)), (6)

with

κ(0) = 0, κ increasing, κ(+∞) = k. (7)

Moreover the convexity properties of κ play an
essential role in the analysis of stability of the
equilibrium states. Here we adopt the most sim-
ple assumption, which can also be justified by
microscopic considerations on the interactions of
atoms, by assuming that κ is three times differ-
entiable and that

κ′ > 0, κ′′ < 0, κ′′′ > 0. (8)

In the analysis of local minima, the derivative of
κ at 0 plays a fundamental role. Let us remark
that κ has the dimension of an energy per unit
surface and that its derivative has the dimension
of a stress. So we put

σc = κ′(0), # = k/σc, (9)

and we will see that σc corresponds to the rup-
ture stress and # to an internal length of the
material. Let us remark that κ has to be de-
fined only for positive real number, because of
the non-penetration condition (3).

1.4 The total energy.

The total energy of the bar associated to an admis-
sible displacement field u will be the sum of its elas-
tic energy and its surface energy, minus (eventually,
when forces are prescribed) the potential of the dead
loads. Specifically it reads as

E(u) = Eb(u) + Es(u) − F(u), (10)

with

Eb(u) =
1
2

∫ +∞

−∞
ESu′(x)2dx, (11)



and

- for loading 1 : F(u) = 0, (12)
- for loading 2 : F(u) = ±Fu+(L), (13)

- for loading 3 : F(u) = ±g

∫ L

0
u(x) dx. (14)

1.5 Local and global minima.

We are now able to give a precise definition of the
stability of the equilibrium states of the bar.

Definition 1 (Global stability). We say that an
admissible displacement u of the bar submitted to one
of the three previous loading cases corresponds to a
globally stable equilibrium state if the total en-
ergy of the bar in this state is less than the total en-
ergy of the bar in any admissible state :

E(u) ≤ E(v), ∀v admissible, (15)

where we recall that a field is admissible if it is piece-
wise smooth and it satisfies the kinematic boundary
conditions (1)– (2) and the non-penetration condition
(3).

Definition 2 (Local stability). We say that an
admissible displacement u of the bar submitted to one
of the three previous loading cases corresponds to a
locally stable equilibrium state if there exists a
neighborhood (in the sense of the chosen norm) of u
such that the total energy of the bar in this state is
less than the total energy of the bar in any other ad-
missible state in this neighborhood :

∃δ(u) > 0, ∀v admissible, ‖v − u‖ ≤ δ(u), v )= u

E(u) < E(v). (16)

The reader will note that the notion of stability
of a state depends on the type of loading. In other
words, the same displacement field may be a stable
equilibrium state when the displacement of the ends
are prescribed, but not when they are free. We will
encounter several examples in the sequel.

1.6 Quasistatic response of the bar

The property of stability of an equilibrium state only
depends on the current loading, but not on the whole
process of loading. To complete the analyze and to
obtain the response of the bar under a loading pro-
cess, we have to precise what is the succession of
states taken by the bar when the load evolves. We
will adopt the quasistatic point of view and assume
that the bar will take, for each value of the loading
parameter (U , F or g following the loading case), the
(or one of the) — if any — (locally or globally) sta-
ble equilibrium state(s) corresponding to this value
of the loading parameter. This assumption will be
sometimes stronger because it will be impossible to

find a continuous evolution of equilibrium states with
the loading parameter2, what means that in such a
situation the dynamical effects should not be ignored.
When several solutions are possible, we will choose
— when it is possible — that which leads to a con-
tinuously dependence of the state with respect to the
loading parameter. Moreover, because of the irre-
versible character of fracture (at least at the macro-
scopic scale where we are working), we must also pro-
pose a path of states compatible with the irreversibil-
ity of the fracture. Let us remark at this purpose
that a precise statement of the irreversibility is easily
available for Griffith’s model, see [1], but less straight-
forward for Barenblatt’s model. This difficulty disap-
pears in our three examples of monotone loading and
we will simply verify as the irreversibility condition
that the set S(u) of the discontinuity points increases
with the loading parameter.

2 Griffith’s surface energy and
global minimum

We first determine the globally stable equilibrium
states for each of the three loading cases when the
surface energy is given by (5).

2.1 Prescribed displacements.

Proposition 1. In the case of a compression
(u+(L) = −U), the global minimum corresponds to
the elastic solution (without fracture) for any value
of U : u(x) = −Ux/L when 0 ≤ x ≤ L.

Proof. It is well known that the elastic response
has the smallest energy among all continuous admis-
sible displacement fields (Theorem of the potential
energy). It remains to prove that the energy of a dis-
placement with at least one point of discontinuity is
greater than E(u) = ESU2/2L. For such a field v, by
using the identity a2 − b2 = (a − b)2 + 2b(a − b) and

v+(L) =
∫ L

0
v′dx +

∑

S(v)

[[v]], (17)

we get

E(v) − E(u) =
1
2

∫ +∞

−∞
ES(v′2 − u′2)dx + Es(v)

>

∫ +∞

−∞
ESu′(v′ − u′)dx

= ES
U

L

∑

S(v)

[[v]]

> 0,

the last inequality being due to U > 0 and (3).
2In the language of dynamical systems, that corresponds to

the situation where a limit point is reached



Proposition 2. In the case of a traction (u+(L) =
+U), the global minimum corresponds to the elastic

solution (without fracture) when 0 ≤ U < Uc =
√

2kL
E

and to an unstrained field with one fracture at an ar-
bitrary point x1 of the bar when U > Uc :

For U < Uc : u(x) = Ux/L, 0 ≤ x ≤ L (18)

For U > Uc : u(x) =
{

0, x < x1

U, x > x1
. (19)

Proof. Let us first consider the case when U < Uc.
Let v )= u be an admissible displacement. When
v is continuous, we have E(v) > E(u) by virtue of
the theorem of the potential energy in linear elastic-
ity. When S(v) is not empty we have E(v) ≥ kS >
ESU2/(2L) = E(u) and thus the required inequality.

Let us now consider the case when U < Uc. In that
case E(u) = kS if u is given by (19). Now the elastic
response has an energy equal to ESU2/2L > E(u).
By virtue of the theorem of the potential energy, any
continuous admissible has also a greater energy. On
the other hand, any field with more than one jump
has an energy greater than kS. The fields v with
exactly one jump have a surface energy equals to kS.
In order that their elastic energy vanishes, they must
have v′(x) = 0 everywhere (except at the jump point).
By virtue of the boundary conditions (1) and (2), they
must then have the form (19).

Finally, we can easily verify that, when U = Uc,
the global minimum of the energy corresponds to the
elastic solution or to the unstrained bar with one frac-
ture.

Equipped with this determination of the globally
equilibrium states of the bar, we can deduce the evo-
lution of the bar during the loading process (by as-
suming that the bar is at each instant in a globally
stable equilibrium state). First, in a compressive test,
the bar will always respond elastically. On the other
hand, in a tensile test, the bar will first (as long as
U < Uc) behave elastically, then brutally (as soon
as U > Uc) breaks at one point, this breaking being
followed by a complete release of the elastic energy.

2.2 Prescribed surface traction.

Proposition 3. In the case of a compression
(F(v) = −Fv+(L)), the global minimum corresponds
to the elastic solution (without fracture) for any value

of F : u(x) = − F

ES
x, 0 ≤ x ≤ L.

Proof. As in the previous case, the elastic solution
has an energy less than the energy of any continuous
admissible field. Let v be an admissible field with

S(v) non empty. We always have

Eb(v) − Eb(u) ≥ ES

∫ +∞

−∞
u′(v′ − u′) dx

= F
( ∑

S(v)\{L}

[[v]] − v−(L) + u−(L)
)
.

Since Es(v) > 0, we deduce that E(v) − E(u) >
F

∑
S(v)[[v]] > 0, that is the expected inequality.

Proposition 4. In the case of a traction (F(v) =
Fv+(L)), a global minimum does not exist , the en-
ergy is not bounded from below.

Proof. Let v the field such that v(x) = 0 for
x < L/2 and v(x) = U > 0 for x > L/2. This
field is admissible, its elastic energy vanishes, its
surface energy equals kS and then its total energy is
kS −FU . Since U can be taken arbitrarily large, the
result follows.

2.3 Prescribed body forces.

Proposition 5. In the case of a compression
(F(v) = −g

∫ L
0 v(x) dx), the global minimum cor-

responds to the elastic solution (without fracture) for
any value of F : u(x) = − g

2ES
x(2L−x), 0 ≤ x ≤ L.

Proof. As in the previous case, the elastic solution
has an energy less than the energy of any continuous
admissible field. Let v be an admissible field with
S(v) non empty. We have

Eb(v) − Eb(u) ≥ ES

∫ +∞

−∞
u′(v′ − u′) dx

= −ES

∫ L

0
u′′(v − u)dx −

∑

S(v)\{L}

ESu′[[v]]

= g

∫ L

0
(v − u)dx + g

∑

x∈S(v)

(L − x)[[v]](x).

Since Es(v) > 0, we deduce that E(v) − E(u) >
g

∑
x∈S(v)(L − x)[[v]](x) ≥ 0, that is the expected

inequality.

Proposition 6. In the case of a traction (F(v) =
g

∫ L
0 v dx), a global minimum does not exist, the en-

ergy is not bounded from below.

Proof. Let v the field such that v(x) = 0 for
x < L/2 and v(x) = U > 0 for x > L/2. This
field is admissible, its elastic energy vanishes, its
surface energy equals kS and then its total energy is
kS − gUL/2. Since U can be taken arbitrarily large,
the result follows.



3 Griffith’s surface energy and
local minima

3.1 Stability of the elastic response

Proposition 7. In each case of loading, for any
value of the loading parameter, the elastic response
is a locally stable equilibrium state.

Proof. Let us recall the variational property of the
elastic response u. In any case, the following equality
holds :

∫ L

0
ESu′ϕ′ dx = F(ϕ),∀ϕ ∈ D, (20)

where D denotes the set of differentiable fields such
that ϕ(0) = 0 and eventually (really, in the first case
of loading) ϕ(L) = 0. Let us now consider admis-
sible displacements of the form v = u + hϕ, with
ϕ piecewise smooth, verifying the required boundary
conditions (ϕ−(0) = 0 and eventually ϕ+(L) = 0),
and with norm 1, ‖ϕ‖ = 1. Since S(u) is empty,
S(v) = S(ϕ) and we have

E(v) − E(u) = kS card(S(ϕ))

+ h

(∫ L

0
ESu′ϕ′ dx − F(ϕ)

)

+
h2

2

∫ L

0
ESϕ′2 dx.

If S(ϕ) is not empty, then for h small enough we
have E(v) > E(u), while, when S(ϕ) is empty, by
using (20) the linear term in h vanishes and we also
get E(v) > E(u).

3.2 Stability of broken responses

Proposition 8. In the cases of (non null) prescribed
surface or body forces, the elastic response is the
unique locally stable equilibrium state.

Proof. We know, by the previous Proposition, that
the elastic response is a local minimum. It remains
to prove that it is unique. It is clear, by the theorem
of the potential energy, that the candidates must be
searched among the discontinuous admissible fields
(the elastic response is already the unique continuous
local minimum among the class of continuous fields).
Assume that u is a local minimum with S(u) non
empty. Let ϕ be a piecewise smooth field, verifying
the required boundary conditions (ϕ−(0) = 0 and
eventually ϕ+(L) = 0), [[ϕ]] > 0 on S(ϕ)\S(u) and
with norm 1 (‖ϕ‖ = 1). Put v = u + hϕ with h > 0.
For h small enough, v is an admissible field and we

must have E(v) > E(u) and thus

0 < kS
(
card(S(u + hϕ)) − card(S(u))

)

+ h

(∫ L

0
ESu′ϕ′ dx − F(ϕ)

)

+
h2

2

∫ L

0
ESϕ′2 dx.

Choosing ϕ such that S(ϕ) ⊂ S(u), for h small
enough we get S(v) = S(u) and [[v]] > 0 on S(u)
whatever the sign of [[ϕ]] is. Dividing the previous
inequality by h and passing to the limit when h goes
to 0, we obtain

∫ L

0
ESu′ϕ′ dx ≥ F(ϕ), (21)

which holds for all ϕ verifying the boundary condi-
tions and such that S(ϕ) ⊂ S(u). (The condition
‖ϕ‖ = 1 can be dropped, because (21) remains valid
by multiplying ϕ by λ > 0.)

Let us finish the proof in the case 2 of loading (the
proof of the case 3 is similar). Since the sign of the
force does not play a role, it suffices to consider the
case of a traction. Now (21) reads as

∫ L

0
ESu′ϕ′ dx ≥ Fϕ+(L). (22)

Taking ϕ in D, that is S(ϕ) empty, we first find

ESu′ = F on [0, L]\S(u).

Inserting this relation in (22) leads to

F
∑

S(u)

[[ϕ]] ≤ 0,

which has to be satisfied by any ϕ verifying the
boundary conditions and such that S(ϕ) ⊂ S(u).
Since the sign of [[ϕ]] is arbitrary on S(u), it is clearly
impossible except when S(u) is empty or F = 0.

Proposition 9. In the cases of prescribed displace-
ments, the responses with an arbitrary finite set of
points of fracture separating unstrained parts of the
bar are the unique non elastic locally stable equilib-
rium states.

Proof. Assume that u is a local minimum with S(u)
non empty. Following the proof of the previous propo-
sition, we obtain the inequality (now, F(v) = 0)

∫ L

0
ESu′ϕ′ dx ≥ 0, (23)

which holds for all ϕ verifying the boundary condi-
tions and such that S(ϕ) ⊂ S(u). We deduce that it
is possible only if u′ = 0 on [0, L]\S(u), S(u) being



arbitrary. Such displacements correspond to those
describe in the statement of the proposition. Let us
now prove that they are effectively local minima.

Let u be such a displacement, let ϕ be a piece-
wise smooth field, verifying the required boundary
conditions (ϕ−(0) = 0 and ϕ+(L) = 0), [[ϕ]] > 0 on
S(ϕ)\S(u) and with norm 1 (‖ϕ‖ = 1). Put v = u+hϕ
with h > 0. For h3 small enough, v is an admissible
field. We get

E(v) − E(u) = kS
(
card(S(u + hϕ)) − card(S(u))

)

+
h2

2

∫ L

0
ESϕ′2 dx.

For h small enough, we have S(u + hϕ) ⊃ S(u),
hence card(S(u + hϕ)) ≥ card(S(u)) and the result
follows.

4 Barenblatt’s surface energy
and local minima

We adopt now the form (6) of the surface energy.
On the first hand its dependence on the value of the
jump of the displacement leads to a less straightfor-
ward analysis, in particular the determination of the
global minima — when they exist — pass by that of
the local ones. On the other hand the energy is now a
differentiable function of the displacement. To char-
acterize the local minima we proceed in two steps :

1. We first establish the so-called first order neces-
sary conditions of local stability which lead to
the notion of equilibrium states.

2. We then determine those which are stable by the
mean of second order sufficient conditions.

4.1 Equilibrium states

Let u be a local minimum, ϕ a piecewise smooth field,
verifying the required boundary conditions (ϕ−(0) =
0 and eventually ϕ+(L) = 0), [[ϕ]] > 0 on S(ϕ)\S(u)
and with norm 1 (‖ϕ‖ = 1). Put v = u + hϕ with
h > 0 and small enough in order that v is admissible
and that S(v) ⊃ S(u). Moreover since E(u + hϕ) >
E(u), by dividing by h and passing to the limit when
h tends to 0, we obtain the following inequality, called
the first order necessary stability condition :

E ′(u)(ϕ) ≥ 0,

3To complete the proof, we should show that h can be cho-
sen independently of ϕ. That leads to too technical develop-
ments for this short paper.

which explicitly reads as

0 ≤
∫ L

0
ESu′ϕ′dx − F(ϕ)

+
∑

S(u)

κ′([[u]])S[[ϕ]] +
∑

S(ϕ)\S(u)

σcS[[ϕ]], (24)

which has to be satisfied by any admissible ϕ. In-
equalities (24) are only necessary conditions of sta-
bility. A field u that satisfies it is not necessarily a
local minimum, we will call it an equilibrium state.

Let us remark that by taking ϕ in D, since D is a
linear space, we deduce from (24) that an equilibrium
state satisfies also

∫ L

0
ESu′ϕ′dx = F(ϕ), ∀ϕ ∈ D. (25)

We now establish the set of local conditions satisfied
by an equilibrium state for each case of loading.

Proposition 10. In the case of prescribed displace-
ments, a piecewise smooth field u is an equilibrium
state if and only if it satisfies the following condi-
tions :

ESu′(x) = F in [0, L]\S(u) (26)
κ′([[u]])S = F on S(u) (27)

F ≤ σcS (28)

where F is a (unknown) constant, and

[[u]] ≥ 0 on S(u), u−(0) = 0, u+(L) = ±U. (29)

Proof. The relations (29) are simply the kinematic
conditions. Since F = 0, (26) is equivalent to (25).
Inserting it in (24) leads to

0 ≤
∑

S(u)

(κ′([[u]])S − F )[[ϕ]] +
∑

S(ϕ)\S(u)

(σcS − F )[[ϕ]].

Since the sign of [[ϕ]] is arbitrary on S(u) but posi-
tive on S(ϕ)\S(u), this last inequality is equivalent
to (27)-(28), what completes the proof.

By proceeding in the same way, we obtain the re-
quired conditions in the two latter cases of loading.

Proposition 11. In the case of prescribed surface
force, a piecewise smooth field u is an equilibrium
state if and only if it satisfies the following condi-
tions :

ESu′(x) = ±F in [0, L]\S(u) (30)
κ′([[u]])S = ±F on S(u) (31)

±F ≤ σcS (32)

where F is the (given) intensity of the applied force,
and

[[u]] ≥ 0 on S(u), u−(0) = 0. (33)



Proposition 12. In the case of prescribed body
forces, a piecewise smooth field u is an equilibrium
state if and only if it satisfies the following condi-
tions :

ESu′(x) = ±g(L − x) in [0, L]\S(u) (34)
κ′([[u]](x))S = ±g(L − x) on S(u) (35)

±gL ≤ σcS (36)

and

[[u]] ≥ 0 on S(u), u−(0) = 0. (37)

We can remark that these first order necessary con-
ditions of stability contain not only the usual equilib-
rium equations of the bar under the prescribed load-
ing but also a yield condition on the stress field, cf
(28), (32) and (36). It is probably the most important
change given by Barenblatt’ model.

We can also note that the elastic response verifies
these conditions provided that the loading parameter
is not larger than a critical value. Specifically it is
easily checked that the elastic response is an equilib-
rium state (in the present sense)

1. for U ≤ σc

E
L, in the case 1 with traction (+U);

2. for F ≤ σcS, in the case 2 with traction (+F );

3. for g ≤ σcS

L
, in the case 3 with traction (+g);

while they are always equilibrium states in compres-
sion.

Moreover the elastic response is the unique equi-
librium state in compression. Indeed, if there ex-
ists other equilibrium states u, they must suffer at
least one jump. But since κ′ > 0, it is impossible
in the two latter cases, by virtue of (31) or (35).
In the first case, we should have F > 0 and hence
u′ > 0. But, from the kinematic conditions we obtain
−U =

∫ L
0 u′dx +

∑
S(u)[[u]] > 0, that is a contradic-

tion.
On the other hand, in the traction cases, many

other equilibrium states exist. Let us first consider
the cases 2 and 3. We obtain

Proposition 13. In the case of a prescribed surface
traction, at each value of F such that 0 < F < σcS,
we can associate an infinite family of equilibrium
states indexed by their set of discontinuity points.
Specifically, let S be a finite subset of [0, L], then u
defined by u−(0) = 0, u′ = F/S on [0, L] \S and
[[u]] = (κ′)−1(F/S) on S is an equilibrium state.

Proposition 14. In the case of prescribed tensile
body forces, at each value of g such that 0 < gL <
σcS, we can associate an infinite family of equilibrium
states indexed by their set of discontinuity points.
Specifically, let S be a finite subset of [0, L], then u
defined by u−(0) = 0, u′(x) = g(L−x)/ES on [0, L]\S
and [[u]](x) = (κ′)−1(g(L − x)/S) on S is an equilib-
rium state.

Since the proofs are straightforward from the pre-
vious characterizations of the equilibrium states, we
omit them. On the other hand, the case 1 needs a
more careful presentation.

Proposition 15. In the case of a prescribed tensile
displacement, at each value of F such that 0 < F <
σcS and each finite subset S of [0, L], we can asso-
ciate an equilibrium state u (defined by u−(0) = 0,
u′ = F/S on [0, L]\S and [[u]] = (κ′)−1(F/S) on S)
corresponding to a prescribed tensile displacement the
value U of which is related to F by

U =
FL

ES
+ card(S)(κ′)−1(F/S). (38)

Proof. The first part of the statement is clear.
Equation (38) follows from the relation U = u+(L) =∫ L
0 u′dx +

∑
S [[u]] and the fact that u′ and [[u]] are

constant.

We can note that for a given U the number of equilib-
rium states is not obvious, but depends on the prop-
erty of the function κ′ and on the ratio #/L between
the material length and the bar length. On the other
hand, in the plane (F, U) they correspond to a count-
able family of curves indexed by card(S), starting
from the “bifurcation point” (σcS, Lσc/E) and fin-
ishing to (0, +∞). These branches of equilibrium can
be parametrized by F , U is then a function of F . The
branch associated with S = ∅ is nothing but the elas-
tic branch : U = FL/ES, while that associated with
n = card(S) > 0 corresponds to the equilibrium of
the bar with n cuts arbitrarily distributed. On these
“fracturing branches” U is a convex function of F , say
Un(F ), by virtue of the assumed convexity properties
(8) of the surface energy. Since

U ′
n(0) =

L

ES
+

n

κ′′(0)S
,

the nth-branch is monotone (Un decreasing) provided
that the length of the bar is small enough, specifically
when

L ≤ Ln =
nE

|κ′′(0)| .

In particular, when L ≤ L1 all the branches are de-
creasing from ∞ to Lσc/E. Otherwise, when L > L1,
the first branches are first decreasing, then increasing
and pass by a minimum, see the Figure 1 in which the
elastic branch and the first branch U1 are represented.

It remains to find what equilibrium states are sta-
ble. It is the goal of the next subsection.

4.2 Locally stable equilibrium states

Let u be an equilibrium state, ϕ a piecewise smooth
field, verifying the required boundary conditions
(ϕ−(0) = 0 and eventually ϕ+(L) = 0), [[ϕ]] > 0
on S(ϕ)\S(u)) and with norm 1 (‖ϕ‖ = 1). Put



v = u + hϕ with h > 0 and small enough in order
that it is admissible and that S(v) ⊃ S(u). Then E
is twice differentiable at u in the direction ϕ and by
developing it up to the second order we obtain

E(u + hϕ) − E(u) = hE ′(u)(ϕ) +
h2

2
E ′′(u)(ϕ)

+o(h2). (39)

Since, by definition, u satisfies E ′(u)(ϕ) ≥ 0, we will
have E(u + hϕ) > E(u) for h sufficiently small in any
direction such that E ′(u)(ϕ) > 0. So we have only
to consider the directions such that E ′(u)(ϕ) = 0.
The analysis of the previous subsection shows that
they correspond to the (admissible) directions ϕ such
that S(ϕ) ⊂ S(u)4. For such directions (39) becomes
E(u + hϕ) = E(u) + h2

2 E ′′(u)(ϕ) + o(h2) and we will
have E(u + hϕ) > E(u) for h sufficiently small pro-
vided that E ′′(u)(ϕ) > 0. On the other hand, if
E ′′(u)(ϕ) < 0, we will have E(u + hϕ) < E(u) for
h sufficiently small and u is not a local minimum.
We have thus obtained the second order conditions
of stability of an equilibrium state.

Proposition 16.
-Second order necessary stability conditions.
An equilibrium state is locally stable only if
E ′′(u)(ϕ) ≥ 0 for any piecewise smooth ϕ such that
S(ϕ) ⊂ S(u), ϕ−(0) = 0 (and eventually ϕ+(L) = 0).

-Second order sufficient stability conditions.
An equilibrium state is locally stable if E ′′(u)(ϕ) > 0
for any piecewise smooth ϕ )= 0 such that S(ϕ) ⊂
S(u), ϕ−(0) = 0 (and eventually ϕ+(L) = 0).

Since the second derivative of the energy in the
examined directions reads as

E′′(u)(ϕ) =
∫ L

0
ESϕ′2dx +

∑

S(u)

Sκ′′([[u]])[[ϕ]]2,

(40)

we immediately obtain

Proposition 17. The elastic equilibrium states (that
is the elastic responses of the bar when the loading
parameter is smaller than its critical value) are locally
stable.

Proof. Since S(u) is empty, the result follows from
(40) and the second order sufficient stability condi-
tion.

When the forces are prescribed, the elastic equilib-
rium states are the unique locally stable states as the
following Proposition proves it.

Proposition 18. In the loading cases 2 and 3, any
equilibrium state with jump discontinuities is unsta-
ble.

4Except when the critical loading parameter is reached. The
determination of the stability of the bifurcation point needs a
separate analysis. We omit it here.

Proof. Let u be an equilibrium state and x1 ∈ S(u)
a point of discontinuity. Put ϕ(x) = 0 for x < x1 and
ϕ(x) = 1 for x > x1. This field is an admissible di-
rection with S(ϕ) ⊂ S(u). But, since ϕ′ = 0, we have
E′′(u)(ϕ) = Sκ′′([[u]](x1)) < 0 and the result follows
by virtue of the second order necessary stability con-
ditions.

It remains to study the stability of the inelastic equi-
librium states in the first loading case where the dis-
placements are prescribed at both ends of the bar.
That leads to the following Proposition :

Proposition 19. In the loading case 1, any equilib-
rium state with more than one discontinuity point is
unstable. Only the equilibrium states with exactly one
discontinuity point and located on the decreasing part
of the branch U1 are locally stable.

Proof. Let u be an equilibrium state with n > 1
points of discontinuity, S(u) = {x1, · · · , xn}. Put
ϕ(x) = 0 for x < x1 or x > xn and ϕ(x) = 1 for
x1 < x < xn. This field is an admissible direction
with S(ϕ) ⊂ S(u) (let us recall that the sign of [[ϕ]]
can be chosen arbitrarily on S(u)). But, since ϕ′ = 0,
we have E′′(u)(ϕ) = S(κ′′([[u]](x1) + κ′′([[u]](xn)) < 0
and the first part of the Proposition follows by virtue
of the second order necessary stability conditions.

Now, let u be an equilibrium state with 1 point of
discontinuity, S(u) = {x1}. Then (40) becomes

E′′(u)(ϕ) =
∫ L

0
ESϕ′2dx + Sκ′′([[u]](x1))[[ϕ]]2.

Let us introduce

λ = min

{∫ L

0
ϕ′2dx | ϕ ∈ S1

}
, (41)

where S1 denotes the set of fields ϕ smooth on IR\{x1},
such that ϕ = 0 on IR\[0, L] and [[ϕ]](x1) = 1..

Owing to the second order necessary and sufficient
stability conditions, u is stable provided that λE +
κ′′([[u]](x1)) > 0 and unstable if λE+κ′′([[u]](x1)) < 0.
Classical tools of Variational Calculus give us that
the minimizer ϕ∗ giving λ is the element of S1 such
that

∫ L
0 ϕ∗′ϕ′dx = 0, for all ϕ in D. Straightforward

calculations give then ϕ∗(x) = −x/L for x < x1 and
ϕ∗(x) = 1 − x/L for x > x1. So

λ = 1/L, (42)

and, since [[u]](x1) = (κ′)−1(F/S), the stability con-
dition of u now reads as E + κ′′((κ′)−1(F/S))L > 0.
Since

U ′
1(F ) =

L

ES
+

1
κ′′((κ′)−1(F/S))S

the result follows.



4.3 Quasistatic responses of the bar

Equipped with this determination of the locally equi-
librium states of the bar, we can deduce the evolu-
tion of the bar during the loading process (by assum-
ing that the bar is at each instant in a locally stable
equilibrium state).

1. First, in any compressive test, the bar will always
respond elastically.

2. In a tensile test with prescribed surface traction
(loading 2, +F ), the bar will first (as long as
F < σcS) behave elastically, then (as soon as
F > σcS) the equilibrium is impossible and a
complete dynamical study must be developed to
determine what happens. Let us remark that the
critical stress is reached simultaneously at every
point of the bar.

3. In a tensile test with prescribed body forces
(loading 3, +g), the bar will first (as long as
gL < σcS) behave elastically, then (as soon as
gL < σcS) the equilibrium is impossible and a
complete dynamical study must be developed to
determine what happens. Let us remark how-
ever that the critical stress is reached at the end
x = 0 of the bar and we can expect that the bar
will break here.

4. In a tensile test with prescribed displacement
(loading 1, +U), if the bar is short enough
(L ≤ L1 = E/κ′′(0)), the bar will first (as long as
EU ≤ σcL) behave elastically, then (as soon as
EU > σcL) a cut appears at an arbitrary point
x1, the two equally strained parts of the bar leave
each other and the stress progressively decreases
to 0. The fracture evolves then smoothly.

5. In a tensile test with prescribed displacement
(loading 1, +U), if the bar is long enough (L >
L1 = E/κ′′(0)), the bar will first (as long as
EU < σcL) behave elastically, then, when EU =
σcL, brutally the bar breaks at an arbitrary point
x1, the two parts of the bar separate suddenly
and the stress brutally decreases. After, when
EU > σcL, the two equally strained parts of
the bar continue progressively to leave each other
and the stress progressively decreases to 0. The
end of the fracture is smooth.

5 Barenblatt’s surface energy
and global minimum

To complete this comparison between Griffith’s and
Barenblatt’s model, we determine in the present sec-
tion the global minima of Barenblatt’s model, when
they exist.

We first consider the cases of compressive loads.

Proposition 20. In the cases of compressive loads,
the elastic responses are the unique globally stable
equilibrium states.

Proof. The proof given for Griffith’s model is still
valid, because we only used the positivity of the
surface energy.

Let us now consider the cases of tensile applied
forces. As for Griffith model, we obtain

Proposition 21. In the case of applied tensile
forces, a global minimum does not exist, the energy
is not bounded from below.

Proof. Let v the field such that v(x) = 0 for
x < L/2 and v(x) = U > 0 for x > L/2. This
field is admissible, its elastic energy vanishes, its
surface energy equals κ(U)S < kS and then its
total energy is less than kS − FU in the case
2 and less than kS − gUL/2 in the case 3. Since
U can be taken arbitrarily large, the result follows.

Finally, we consider the case of tensile prescribed
displacement.

Proposition 22. In the case of a prescribed tensile
displacement U ,

1. For small bars, when L ≤ L1, the elastic re-
sponse is globally stable as long as U ≤ Lσc/E, while
the equilibrium states of the first branch U1 are glob-
ally stable as soon as U ≥ Lσc/E.

2. For long bars, when L > L1, the elastic re-
sponse is globally stable as long as U ≤ U∗, while
the locally stable equilibrium states of the first branch
U1 are globally stable as soon as U ≥ U∗, where U∗

corresponds to the Maxwell displacement (see Figure
2).

Proof. For Griffith’s model, we proved directly the
results, by verifying that the expected candidate is
really a minimizer. In the case of Barenblatt surface
energy, we can not use this way. Moreover the rigor-
ous proof of the existence of a minimum required ad-
vanced tools of functional analysis. In the present pa-
per, we will simply remark that the energy is bounded
from below, omitting the verification that the infi-
mum is effectively reached. Once we know that a
global minimum exists, we will find it among the set
of local minima. We have to distinguish 2 cases de-
pending on the bar length.

When the bar length is smaller than L1, then at
each value of the loading parameter U is associated
one and only one local minimum, see Figure 5. It is
then necessary also the global one.

When the bar length is longer than L1, then, since
the branch U1 is not monotone, there exists an inter-
val in which at each value of the loading parameter
corresponds two local minima, see Figures 1 and 4.
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Figure 1: Graphic interpretation of the global energy
of a locally stable equilibrium state containing one cut.

We have to compare their value. The energy of the
elastic equilibrium state is E0 = ESU2/2L while the
energy of the “broken” stable equilibrium state is

E1 =
F 2L

2ES
+ κ((κ′)−1(F/S))S, (43)

the force F being related to the prescribed displace-
ment U by

U =
FL

ES
+ (κ′)−1(F/S). (44)

This value can be interpreted graphically. Indeed, E1

is nothing but the colored area on the Figure 15.

Figure 2: Graphic determination of the global mini-
mum and the Maxwell line.

In consequence the determination of the global
minimum is graphically straightforward. Indeed,

5The verification is given in the appendix.

since E0 is the area of the triangle given by the elastic
branch segment line, E0 will be less (resp. higher)
than E1 when U is less (resp. larger) than U∗ which
corresponds to the point such that the two colored
areas on the Figure 2 are equal. That corresponds to
the famous Maxwell rule.

6 Conclusion

The comparison of Griffith’s model with Barenblatt’s
model is summarized in the three following graphics
representing the portraits of the branches of equilib-
rium states with their stability in the case of pre-
scribed tensile displacements. The stability of a state
is indicated by the width of the branch :

: global minimum,

: local minimum,

: unstable equilibrium.

Figure 3: Griffith’s model : Portrait of the branches
of equilibrium states and their stability in the case of
prescribed tensile displacements.

The main disadvantage of Griffith’s energy surface
is that the elastic response always remains locally sta-
ble (as well for applied displacements as for applied
forces), while Barenblatt’s energy surface destabilizes
this response by introducing a yield stress σc. These
properties are proved here in a one-dimensional con-
text, but hold true in higher dimensions as we will
show in a paper in preparation.

The main disadvantage of the assumption that the
structure only searches for the global minima is first
that it does not work when tensile forces are applied
because the energy is not bounded from below (it is
also a general result, valid in any dimension). More-
over it induces spurious size effects. Indeed, let us
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Figure 4: Barenblatt’s model and L > L1 : Portrait of
the branches of equilibrium states and their stability
in the case of prescribed tensile displacements.

Figure 5: Barenblatt’s model and L ≤ L1 : Portrait of
the branches of equilibrium states and their stability
in the case of prescribed tensile displacements.

consider the case of applied displacements with Grif-
fith’model. We have found that the bar breaks when
U reaches the critical value

Uc =
√

2kL

E

corresponding to the critical strain
√

2k
EL and the crit-

ical stress
√

2kE
L . Thus, longer is the bar, smaller

is the rupture stress, and even, when the bar length
tends to infinity, the rupture stress tends to 0. A sim-
ilar result holds with Barenblatt’s surface energy (the
verification is left to the reader). By authorizing also
local minima, the size effects do not disappear (com-
pare Figure 4 with Figure 5) because both models
contain the internal length #. But (at least in this 1D
study) the size effects due to local minima and Baren-
blatt’s surface energy are physically satisfactory.

It remains to investigate the properties of local
minima for Barenblatt’s model in higher dimensions.

A major challenge.
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[4] B. Bourdin. Une méthode variationnelle en
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APPENDIX : The graphic
interpretation of the energy

Figure 6: Graphic calculation of the energy.

We have to prove that in the case of a prescribed
displacement U the energy E1 of the locally stable
equilibrium field u located on the decreasing part of
the branch U1 corresponds to the darked area A on
the Figure 1.

Let us consider Figure 6 with the four numbered
areas Ai, i = 1, 4. We easily check the following rela-
tions

A = A1 + A2, (45)

A4 =
F 2L

2ES
, (46)

A1 + A4 = FU, (47)

A3 + A4 =
σ2

cSL

2E
, (48)

A2 + A3 =
∫ σcS

F
U1(f)df. (49)

From (44), we obtain

A2 + A3 =
σ2

cSL

2E
− F 2L

2ES
+

∫ σcS

F
κ′−1(f/S)df

= A3 +
∫ σcS

F
κ′−1(f/S)df,

what yields

A2 =
∫ σcS

F
κ′−1(f/S)df. (50)

Introducing the change of variable δ = κ′−1(f/S)
gives

A2 = −
∫ U−F L

ES

0
δκ′′(δ)S dδ. (51)

A direct calculation of the latter integral leads

A2 = −FU +
F 2L

ES
+ κ

(
κ′−1(F/S)

)
S (52)

and finally

A =
F 2L

2ES
+ κ

(
κ′−1(F/S)

)
S,

what exactly corresponds to E1, see (43).


