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Notation

Throughout these Lecture Notes the following notation is used:

− In n-dimension, n > 1,the vectors and second order tensors are indicated by boldface letters,
like u, ε and σ for the displacement vector, the strain tensor and the stress tensor. Their
components are denoted by italic letters, like ui and σij .

− The reference configuration of a material point is x and its cartesian coordinates in Rn are
(x1, · · · , xn). The orthonormal basis of Rn is (e1, · · · , en), Mn

s denotes the space of 2 × 2
symmetric tensors of Rn and I is its identity tensor.

− The fourth order tensors as well as their components are indicated by a sans serif letter, like
E or Eijkl for the stiffness tensor. Such tensors are considered as linear maps applying on
vectors or second order tensors and the application is denoted without dots, like Eε whose ij-
component is Eijklεkl. The summation convention on repeated indices is implicitly adopted.
The inner product between two vectors or two tensors of the same order is indicated by a
dot, like a · b which stands for aibi or σ · ε for σijεij .

− The symbol ⊗ denotes the tensor product and ⊗s its symmetrized, i.e. 2e1 ⊗s e2 = e1 ⊗
e2 + e2 ⊗ e1.

− In one-dimension, n = 1, all the scalar quantities or fields are indicated by italic letters, like
u, ε, σ or E(α) for the displacement, the strain, the stress or the damaged Young modulus.
The prime denotes either the derivative with respect to the coordinate x or the derivative
with respect to the damage parameter, e.g. u′ = ∂u/∂x, E′(α) = dE(α)/dα

− The dot stands for the time derivative, e.g. α̇ = ∂α/∂t.

− The qualifier increasing (resp. decreasing) stands for strictly increasing (resp. strictly de-
creasing) and should not be confused with non decreasing (resp. non increasing). In the
same way, the qualifier positive (resp. negative) stands for > 0 (resp. < 0) and not for ≥ 0
(resp. ≤ 0).

− The classical convention is adopted for the orders of magnitude: o(h) denotes functions of
h such that limh→0 o(h)/h = 0.
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Part I

Construction of damage models
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Abstract

The first part of these Lecture Notes is devoted to the construction of brittle damage laws. Starting from the

general class of local damage laws based on the concept of yield criterion, we first justify from Drucker-Ilyushin

postulate that these laws can be formulated within the framework of Generalized Standard Materials developed

by Nguyen (2000). Accordingly, the strain work becomes a state function whose convexity properties are directly

related to the hardening or softening properties of the material. Moreover, the evolution problem can automatically

be read as a variational problem (Pham and Marigo, 2010a). This naturally appearing formulation is reinforced

so that it finally contains the concepts of stability and energy conservation (Mielke, 2005; Bourdin et al., 2008).

In the case of softening materials, it turns out that these type of models lead to ill-posed mathematical problems

(Comi, 1995) because of their local character and the absence of terms limiting the damage localization. To avoid

these pathological localizations we introduce gradient of damage terms in the model which contains accordingly

(at least) one characteristic length. Then, following Pham and Marigo (2010b), the evolution problem associated

with this enhanced model is obtained by using the principles of irreversibility, stability and energy balance.

1. Construction of local brittle damage models

1.1. The fundamental ingredients

If one follows the procedure proposed by Marigo (1981), the construction of a damage model
consists in the three following steps:

(i) choice of the damage parameter;

(ii) choice of the dependence of the constitutive stress-strain relation on this parameter;

(iii) choice of the law which governs the evolution of the damage parameter.

Our goal is not to develop a model for a precise application but rather to give a general framework
for constructing any brittle damage model. Accordingly, in this introductory lecture we will make
the simplest choices so that to emphasize the fundamental concepts. Specifically we assume that:

(i) The damage state of a material point can be described by a scalar α. This is of course a
very strong assumption which is essentially justified by a sake of simplicity, these types of
phenomenological models being devoted to the computation of mechanical structures. The
choice of the parameter and consequently its physical interpretation remain at this stage
arbitrary. Starting from a first choice, we will always have the possibility to make a change
of variable. This opportunity will be used in the sequel. Therefore, at this stage, we merely
assume that α grows from 0 to αm where 0 < αm ≤ +∞, 0 corresponds to the undamaged
state and αm to the full damaged state;
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(ii) At given α, the material has an elastic material. Its elasticity depends on the damage variable
through the elastic potential ψ(ε, α) which is assumed to be continuously differentiable in
Mn
s × [0, αm), Mn

s denoting the space of second order tensors and n the space dimension. To
simplify the presentation we will assume that ψ is a quadratic function of ε at given α, i.e.

ψ(ε, α) = 1
2
E(α)ε · ε, (1)

where E(α) denotes the fourth order stiffness tensor. Accordingly, the material behavior is
linearly elastic at given α and the stress-strain relation reads as

σ =
∂ψ

∂ε
(ε, α) = E(α)ε. (2)

The fact that α really corresponds to a damage variable results in a decrease of the stiffness
when α grows. Therefore, we will assume that the function α 7→ E(α) satisfies the following
properties:

E(0) > 0, E′(α) < 0, E(αm) = 0. (3)

The inequalities above must be understood in the sense of the positivity of fourth order
tensors. Specifically, a fourth order tensor A is said positive when the following inequality
holds:

Aε · ε > 0, ∀ε ∈Mn
s , ε 6= 0.

Therefore, we assume in (3) that the material progressively looses its rigidity and has no
more rigidity when it is fully damaged. As long as α < αm, the stiffness tensor E(α) is
positive and hence invertible. Its inverse is the compliance tensor S(α),

S(α) = E(α)−1 (4)

which gives the strain in terms of the stress for a given damage state,

ε = S(α)σ. (5)

(iii) For irreversibility reasons, damage can only grow and its growth is governed by a yield
criterion (like in plasticity). Accordingly, we assume that there exists a damage yield function
φ(ε, α), which is expressed in terms of the strain in order to be able to account for softening
behaviors, such that the evolution of α is governed by the Kuhn-Tucker conditions:

α̇ ≥ 0, φ(ε, α) ≤ 0, α̇φ(ε, α) = 0. (6)

The first condition in (6) accounts for the irreversibility, the second one is the damage yield
criterion and the third one is the consistency condition which expresses that damage can
grow only when the strain state is on the yield surface.

One can note that α is the unique internal variable of the model and that is plays also the
role of a hardening parameter. The function φ is assumed to be sufficiently smooth so that
φ(ε, α) ≤ 0 corresponds, for every α ∈ [0, αm), to a closed connected set in Mn

s which contains
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the unstrained state ε = 0, i.e. such that (φ(0, α) < 0), and the boundary of which is smooth and
evolves continuously with α. This set, denoted R(α), corresponds to the elastic domain (called
also the reversibility domain) in the strain space when the material point is in the damaged
state α,

R(α) = {ε ∈Mn
s : φ(ε, α) ≤ 0}.

By virtue of the stress-strain relation (5), when α < αm, one can associate to R(α) the elastic
domain R∗(α) in the stress space,

R∗(α) = {σ ∈Mn
s : φ(S(α)σ, α) ≤ 0}.

1.2. Justification of standard models

A priori, the functions ψ et φ can be chosen independently. The so-called standard laws (Nguyen,
2000) consist in defining the damage yield function φ from the thermodynamical force Y :=
−∂ψ/∂α associated with α. In the present context Y corresponds to an elastic energy release rate.
It turns out that the standard law property can be deduced from Drucker-Ilyushin postulate.
This fundamental result, which is the cornerstone of all the variational approach developed in
the present Lectures, is proved in Marigo (1989) or Marigo (2000) and we merely recall its
statement here.

Let α0 be the initial damage state and let t 7→ ε(t) be a cycle in the strain space, i.e. a path
Mn
s parameterized by t ∈ [0, 1] such that ε(0) = ε(1). During this cycle imposed to the material

point the damage state evolves, its evolution t 7→ α(t) being governed by the damage law (6).
The strain work W done during this cycle is given by

W =

∫ 1

0

∂ψ

∂ε
(ε(t), α(t)) · ε̇(t)dt. (7)

Drucker-Ilyushin postulate consists in requiring that W ≥ 0 whatever the initial state α0 and
whatever the cycle which are considered. That leads to the following

Proposition 1.1 (Damage Standard Laws and Drucker-Ilyushin postulate). The strain work W
is non negative for every initial damage state and every strain cycle only if the damage criterion
is a criterion corresponding to a critical elastic energy release rate criterion. Specifically, there
necessarily exists κ(α) > 0 such that R(α) can read as

R(α) =

{
ε ∈Mn

s : −∂ψ
∂α

(ε, α) ≤ κ(α)

}
. (8)

In other words, the yield function φ can read as:

φ(ε, α) = −∂ψ
∂α

(ε, α)− κ(α). (9)
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Let us note that : (i) the result is valid even if ψ is not quadratic in ε; (ii) one gets a weaker
result when the damage variable is not a scalar, cf Marigo (1989)[Theorems 6.5 and 6.6]; (iii) the
converse property is true (and hence Drucker-Ilyushin postulate and critical energy release rate
criterion are equivalent) provided additional conditions are assumed for the evolution of R(α)
with α.

The first consequence is that the strain work is a state function, i.e. the work done in order
that the state of the material point evolves from its unstrained and undamaged state (0, 0) to
the state (ε, α) is independent of the strain path. Specifically, one gets

W = W0(ε, α) := ψ(ε, α) + w(α) (10)

where α 7→ w(α) is the primitive of α 7→ κ(α) vanishing at α = 0, i.e.

w(α) =

∫ α

0
κ(β)dβ.

Accordingly, w corresponds to the energy which is dissipated during the damage process where
the damage grows from 0 to α. Since w′ = κ > 0, the dissipated energy is an increasing function
of α and hence Clausius-Duhem inequality is automatically satisfied. Indeed, if one considers
that the free energy is given by the elastic energy ψ, then the dissipated power D reads as

D := σ · ε̇− ψ̇ = −∂ψ
∂α

(ε, α)α̇.

Using the consistency equation, one gets

D = w′(α)α̇ ≥ 0.

Finally, the damage evolution law can read (as long as α < αm) as:

α̇¬ ≥ 0,
∂W0

∂α
(ε, α) ≥ 0, α̇

∂W0

∂α
(ε, α) = 0 , (11)

while the stress-strain relation can also read as

σ =
∂W0

∂ε
(ε, α).

This remark is crucial for obtaining variational properties.

Remark 1. If one makes the change of variable α 7→ ω = w(α), which consists in taking the
dissipated energy as the damage variable, the strain work function and the damage criterion can
read as

W̃0(ε, ω) = ψ̃(ε, ω) + ω, −∂ψ̃
∂ω

(ε, ω) ≤ 1. (12)

In the present setting where the elastic energy is a quadratic function of the strain, that leads to

W̃0(ε, ω) = 1
2
Ẽ(ω)ε · ε+ ω, − 1

2
Ẽ′(ω)ε · ε ≤ 1,

where Ẽ ◦ w = E.
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1.3. Hardening and softening properties

In the standard model (8), the elastic domains in the strain and the stress spaces read respec-
tively, when α 6= αm:

R(α) =

{
ε ∈Mn

s :
∂W0

∂α
(ε, α) ≥ 0

}
, R∗(α) =

{
σ ∈Mn

s :
∂W∗0
∂α

(σ, α) ≤ 0

}
(13)

where W∗0(σ, α) = ψ∗(σ, α)−w(α) is the Legendre transform of W0(ε, α) with respect to ε, i.e.

W∗0(σ, α) = sup
ε∈Mn

s

{σ · ε−W0(ε, α)}.

In the present context where ψ is a quadratic function of ε, one gets

W∗0(σ, α) = 1
2
S(α)σ · σ − w(α).

In the present setting and by virtue of the assumption (3), the elastic domains are bounded
ellipsoids in the strain and stress spaces which are centered at 0. But more than their shape, it
is the evolution of their size with α which plays an essential role in the qualitative properties of
the damage evolution problem. To this purpose, let us first introduce the following definition:

Definition 1.2 (Hardening properties). One says that the behavior of the material is with strain-
hardening if α 7→ R(α) is increasing, with stress-hardening if α 7→ R∗(α) is increasing, with
stress-softening (or shortly, with softening) if α 7→ R∗(α) is decreasing.

These monotonicity properties must be understood in the sense of the set inclusion. Accord-
ingly, the strain-hardening property means that α′ > α ⇒ R(α′) ⊃ R(α). If one takes the
dissipated energy as the damage variable (cf Remark 1), it turns out that these properties of
increase or decrease of the elastic domains are equivalent to properties of convexity or concavity
of W̃0 or W̃∗0 by virtue of the following proposition:

Proposition 1.3 (Convexity and Hardening). The strain-hardening condition is equivalent to
the strict convexity of W̃0 with respect to ω at given ε. The stress-hardening condition is equiv-
alent to the strict convexity of W̃0 with respect to the pair couple (ε, ω). The stress-softening
condition is equivalent to the strict convexity of W̃∗0 with respect to ω at given σ.

However, it is important to note that these convexity properties are not invariant by change
of the damage variable, while the hardening or softening properties are intrinsic and independent
of the choice of the damage variable.
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1.4. Some examples

Example 1. In 1D, the most general model that we can consider in the present setting corre-
sponds to

W0(ε, α) =
1

2
E(α)ε2 + w(α) (14)

where E(α) denotes the Young modulus of the material which decreases from E0 to 0 when α
grows from 0 to αm. Moreover, R(α) and R∗(α) are intervals of the form [−εc(α),+εc(α)] and
[−σc(α),+σc(α)].

Example 2. In anti-plane elasticity, for an isotropic material the model reads as

W0(ε, α) = µ(α)(ε2
13 + ε2

23) + w(α) (15)

where the direction 3 corresponds to the anti-plane direction. In (15), µ(α) denotes the shear
modulus which decreases from µ0 to 0 when α grows from 0 to αm. Therefore, R(α) and R∗(α)
are disks in the planes (ε13, ε23) and (σ13, σ23) which are centered at the origin.

Example 3. In 3D, still for isotropic materials, the most general model that one can consider
in the present setting reads as

W0(ε, α) =
1

2
K(α)(Tr ε)2 + µ(α)εD · εD + w(α) (16)

where K(α) and µ(α) denote the compressibility and the shear moduli respectively. In (16), εD

denotes the deviatoric part of ε and Tr ε its trace. In general, R(α) and R∗(α) are bounded
ellipsoids.

In all the examples above, one can represent any type of hardening or softening properties
by a relevant choice of the functions of α entering in their definition.

2. The variational properties of standard models

Let us consider a n-dimensional body whose natural reference configuration is the open set Ω of
Rn. It is made of one (or several) brittle damage material(s) of the type described in the previous
section. (In the case where the body is heterogeneous, the strain work state function W0, the
ultimate damage state αm and all other involved quantities depend on the material point x.)
From an initial situation, the body is submitted to a loading which is time-dependent.
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2.1. The evolution and the incremental problems

Denoting by t the time parameter which is defined so that t = 0 be the initial time, the quasi-
static evolution problem consists in seeking for the displacement field ut, the damage field αt
and the stress field σt at each time t ≥ 0. These fields have to satisfy the equilibrium equations,
the boundary conditions, the constitutive equations and the damage evolution law. That leads
to the following set of conditions:

Equilibrium : divσt + ft = 0 in Ω

Neumann boundary conditions : σtn = Ft on ∂FΩ

Dirichlet boundary conditions : ut = Ut on ∂DΩ

Constitutive relations : σt = E(αt)ε(ut) in Ω

Compatibility conditions : 2ε(ut) = ∇ut +∇uTt in Ω

Kuhn-Tucker conditions :


α̇t ≥ 0,

− 1
2
E′(αt)ε(ut) · ε(ut) ≤ w′(αt)

α̇t ( 1
2
E′(αt)ε(ut) · ε(ut) + w′(αt)) = 0

in Ω

at which one must add the initial condition for the damage field (α0 given in Ω).

In the relations above, ft denotes the body forces prescribed at time t, Ft corresponds to
the surface forces prescribed on the part ∂FΩ of the boundary at time t and Ut represents the
prescribed displacement of the complementary part ∂DΩ of the boundary at time t. Note that
we assume that ∂Ω is divided into two parts, one corresponding to Dirichlet boundary consitions
and the other to Neumann boundary conditions, and that these parts do not depend on time.
It is of course possible to consider more general boundary conditions, but we adopt these ones
to simplify the presentation. Note also that the problem is implicitly set in the framework of
small displacements: the equilibrium equations are written in the reference configuration and
the relation between the strains and the displacements is linearized, the strain field being the
symmetric part of the gradient of the displacement field.

By virtue of the standard character of the damage evolution law (11), the above evolution
problem is equivalent to variational inequations. Before to prove this fundamental property, one
must introduce some definitions.

Definition 2.1 (Admissible fields). We denote by Ct the set of kinematically admissible displace-
ment fields at time t:

Ct = {v : v = Ut on ∂DΩ}.
Thus Ct is an affine space and C0 is the associated linear space:

C0 = {v : v = 0 on ∂DΩ}.
We assume that the part ∂DΩ of the boundary where the displacements are prescribed is suffi-
ciently “large” so that there does not exist admissible rigid displacements. Specifically, we assume
that the unique element v of C0 which is such that ε(v) = 0 in Ω is v = 0.

13



We denote by D0 the set of admissible damage fields:

D0 = {α : 0 ≤ α ≤ αm in Ω}.
With α ∈ D0 we associate the set D(α) of the damage fields which are accessible from α by
taking account of the irreversibility condition:

D(α) = {β : α ≤ β ≤ αm dans Ω}.

With a pair (v, β) ∈ Ct×D0 admissible at time t we associate the total energy Et(v, β) of the
body in this state at that time:

Et(v, β) =

∫
Ω
W0(ε(v), β)dx−W e

t (v) (17)

where ε(v) denotes the symmetric part of the gradient of v (i.e. the strain field associated with
v) and W e

t (v) is the work done by the external forces at time t, i.e.

W e
t (v) =

∫
Ω

ft · v dx+

∫
∂FΩ

Ft · v dS.

Remark 2. The choice of the functional spaces is a real issue. If β < αm almost everywhere,
then the energy is finite provided that v ∈ H1(Ω,Rn). But the questions of regularity become
much more delicate when a part of the body is fully damaged (i.e. when αt = αm is a part of Ω
with non zero volume). This is outside the scope of the present Lectures.

Let us assume to simplify the presentation that the body is undamaged at time 0, i.e. α0 = 0,
and that it is free of any loading at this initial time, i.e. U0 = 0, f0 = 0 and F0 = 0. Then
the body is its natural reference configuration at t = 0, u0 = 0 and σ0 = 0. Then, one gets the
following fundamental property:

PB 1. The evolution problem is equivalent to find, for t > 0, (ut, αt) ∈ Ct × D0 satisfying the
following three items

(ir) : α̇t ≥ 0,

(st) : E ′t(ut, αt)(v − ut, β − αt) ≥ 0, ∀(v, β) ∈ Ct ×D(αt),

(eb) : E ′t(ut, αt)(0, α̇t) = 0,

In the statement of the proposition above, E ′t(ut, αt)(v, β) denotes the directional derivative
of Et at (ut, αt) in the direction (v, β):

E ′t(ut, αt)(v, β) :=
d

dh
Et(ut + hv, αt + hβ)|h=0 .

Accordingly, in the present context, E ′t(ut, αt)(v, β) reads as

E ′t(ut, αt)(v, β) =

∫
Ω

(
σt · ε(v) +

(
1
2
E′(αt)ε(ut) · ε(ut) + w′(αt)

)
β
)
dx−W e

t (v).
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Let us note that (ir) and (eb) involve the rate fields whereas (st) only involves the state of the
body at a given time.

Proof. The complete proof is left as an exercice. It is based on the fact that the item (st) is
simply the variational form of the equilibrium and the damage criterion (φ(ε, α) ≤ 0). The item
(eb) is then equivalent to the consistency condition (α̇φ(ε, α) = 0). 2

In practice, in numerical computations one solves the incremental problem, i.e. the problem
obtained after time discretization. It consists in finding, for i ∈ N∗, (ui, αi) ∈ Ci ×D(αi−1) such
that

E ′i(ui, αi)(v − ui, β − αi)¬ ≥ 0, ∀(v, β) ∈ Ci×D(αi−1). (18)

2.2. The main properties of the evolution problem

The properties are completely different according to the behavior of the material is with stress-
hardening or stress-softening.

2.2.1. Case of stress-hardening

In that case, the total energy of the body enjoys of convexity properties (see Proposition 1.3).
Then, using the incremental problem, one can prove the following fundamental

Proposition 2.2. If the damage law is a standard damage law with stress-hardening in the
sense of Definition 1.2, then, at each time step i when the solution exists, (ui, αi) minimizes the
total energy Ei of the body over Ci ×D(αi−1).

In other words, for stress-hardening materials the incremental problem is equivalent to a
sequence of global minimization of the energy. Moreover, if one adopts a stronger condition for the
hardening (roughly speaking, with a sufficiently growth of the stresses to infinity when α grows
to αm), then one can prove that the incremental problem admits a unique solution. Accordingly,
the standard damage models with stress-hardening are similar from the mathematical viewpoint
to standard elasto-plastic materials with hardening.

2.2.2. Case of stress-softening

In practice, the materials have a stress-softening behavior before their failure. Conversely, only
models with a stress-softening behavior can account for the nucleation of cracks as we will
see in the last Lectures. But it is possible to show that any local brittle damage model with
stress-softening suffers from the following bad properties:
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1. The body cannot sustain too high forces (that corresponds to the concept of limit loads like
in plasticity). It is the consequence of the fact that the stresses are bounded. Accordingly,
it is possible that the evolution problem admis no solution beyond a certain critical time.

2. On the other hand, even when a solution exists, its uniqueness is not guaranteed. It is even
possible to see on very simple examples (like the problem of a bar under a controlled traction
at one end) that the evolution problem admits an infinite number of solutions.

3. It can also happen that the evolution problem does not admit a continuous solution in time
and that one has to consider discontinuous time evolution of the damage field. This can be
seen also in very simple examples where the global response contains a snap-back. In such
a case, the items (ir) and (eb) have no more sense, at least under the form that they have
been formulated.

4. When one tries to find a numerical solution by solving the evolution problem with the finite
element method, it turns out that the result is in general very mesh sensitive.

Some of these pathologies are inherent to the stress-softening property while other ones are due
to the local character of the model. For instance, it is clear that the concept of limit load is due
to the fact that the stresses are bounded and not to the local character of the model. As far as
the uniqueness and the mesh sensitivity are concerned, it is necessary to see if some solutions are
better than the other ones before to change the model. That requires to introduce a criterion for
selecting the solutions. The natural way is to change the item (st) by introducing the concept of
stability. In the same spirit, it is necessary to change the items (ir) and (eb) to enlarge the set
where one searches the solution by allowing time discontinuous solutions.

2.3. The enriched formulation of the evolution problem

2.3.1. The concept of stability of states

For conservative systems, one can define the stable states as those which correspond to local
minima of the energy. This concept can be extended to the dissipated systems which are governed
by standard laws, see (Nguyen, 2000). We will follow this way here and we introduce the concept
of directional stability. That leads to the following definition:

Definition 2.3 (Directional stability). At a given time t a state (u, α) of the body is said stable
if it is admissible and if, in any accessible direction, there exists a neighborhood where every
accessible direction has an energy which is no less than the energy of the state (u, α).

Specifically, one requires that (u, α) ∈ Ct ×D0 be such that

(ST)


∀(v, β) ∈ Ct ×D(α), ∃h̄ > 0, ∀h ∈ [0, h̄],

Et(u + h(v − u), α+ h(β − α)) ≥ Et(u, α).
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Let us remark that if (ut, αt) is stable, then dividing the energy inequality in (ST) by h > 0
and passing to the limit when h→ 0, one recovers (st). In other words, one has the implication

(ST) =⇒ (st).

So, the equilibrium and the damage yield criterion can be seen as necessary conditions of stability.
One says that there are first order stability conditions (because they are obtained by expanding
the energy of the perturbed system up to the first order in h). But they are not always sufficient to
ensure the stability. In other words, (st) and (ST) are not always equivalent. More precisely, (st)
and (ST) are equivalent for stress-hardening behaviors but not for stress-softening behaviors.
Accordingly, (ST) becomes an interesting criterion of selection in the case of stress-softening
where the uniqueness in general fails. We will develop this idea in the next Lectures.

2.3.2. The energy balance

The condition (eb) can be seen as a local balance of the total energy when the damage evolves,
since it says that the real elastic energy release rate is equal to the dissipated power:

−∂ψ
∂α

(εt, αt)α̇t = w′(αt)α̇t.

To read it under this form supposes that t 7→ αt is at least absolutely continuous. In such a case,
we have the following

Proposition 2.4 (Global energy balance). During a smooth damage evolution, the evolution of
the total energy satisfies the following global balance

(EB) Et(ut, αt) = E0(u0, α0) +

∫ t

0

(∫
Ω
σt′ · ε(U̇t′)dx−W e

t′(U̇t′)− Ẇ e
t′(ut′)

)
dt′

where U̇t′ and Ẇ e
t′ denote the rate of the prescribed loading at time t′.

Formal proof. Differentiating with respect to t the total energy Et(ut, αt), taking into account
(eb) and using the equilibrium, one gets vient

d

dt
Et(ut, αt) =

∫
Ω
σt · ε(u̇t)dx−W e

t (u̇t)− Ẇ e
t(ut) =

∫
Ω
σt · ε(U̇t)dx−W e

t (U̇t)− Ẇ e
t (ut).

Integrating with respect to t leads to(EB). 2

Let us note that (st) are (eb) equivalent to (st) and (EB) if the evolution is smooth in time,
but the advantage of (EB) is that it can be used also when the damage evolution is no more
continuous. Indeed, (EB) only involves the regularity of the loading with respect t, i.e. the
regularity of t 7→ Ut and t 7→ W e

t , and not the regularity of the response. If we adopt (EB)
we implicitly require that the total energy be an absolutely continuous function of t even when

17



t 7→ (ut, αt) is discontinuous. It is really a strong physical assumption, since we could consider
that any non regular time evolution cannot be treated in the framework of quasi-static evolution
but involves inertial effects where the kinetic energy plays a role.

2.3.3. The extended formulation

Finally, we propose to replace the item (st) by the stability condition (ST) and the item (eb) by
its extended version (EB). The new evolution problem reads then:

PB 2 (The extended evolution problem). Find, for every t ≥ 0, (ut, αt) ∈ Ct ×D0 such that (IR) : t 7→ αt must be non decreasing;
(ST) : (ut, αt) must be stable in the sense of Definition 2.3;
(EB) : The energy balance must be satisfied.

One sees that in one hand the new formulation is more restrictive than the initial one because
one only admits stable states, but is more tolerant in the other hand since one admits non smooth
evolutions. Let us emphasize the difference between stability and regularity (or equivalently
between instability and non regularity). The concept of stability as it is defined here is a
property of a state while the regularity is a property of the evolution. Accordingly, one can
find regular evolutions which satisfy (st) but not (ST) at some times, and, conversely, one can
find discontinuous evolutions which satisfy (ST) at each time.

2.4. The necessity for enhancing the local model in the case of softening

Let us use the concept of stability as a criterion of selection of solutions on an example.

Example 4. Let us consider a one-dimensional bar where both ends are under controlled dis-
placements. According to the behavior is with stress-hardening or stress-softening, we have the
following properties:

− In the case of a stress-hardening behavior, the evolution problems PB 1 and PB 2 admit
the same and unique solution which corresponds to a homogeneous response (the damage
field is constant along the bar);

− In the case of a stress-softening behavior, the evolution problem PB 1 admits an infinite
number of solutions while the evolution problem PB 2 admits no solution beyond the elastic
stage. That means that the stability condition (ST) is not satisfied by any solution of 1.

This example suggests that the stability condition is really a good criterion for selecting the
solutions, but also that the local damage models must be enhanced.
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3. The introduction of gradient damage terms

The idea consists in introducing gradient damage terms in the strain work function so that to
penalize the localization of damage. That will be made in the restricted setting of linearized
theory for isotropic material.

3.1. The enhanced form of the strain work state function

At a given material point, the gradient damage vector ∇α is now considered as a (local) internal
variable as well as the value α of the damage at that point. Accordingly, the state of the material
point is characterized by the triplet (ε, α,∇α).

The strain work becomes the following state function

W : Mn
s×[0, αm]×Rn → R, (ε, α,∇α) 7→W(ε, α,∇α).

In the framework of a linearized theory, W is expanded in the neighborhood of the “thermo-
dynamical equilibrium state” (0, α,0) up to the second order in ε and ∇α. This linearization
is partial in the sense that it only concerns the strain and the gradient of damage but not the
damage itself. It is due to the fact that the variation of the stiffness is not small when the damage
evolves in the full range [0, αm]. That leads to the following expression

W(ε, α,∇α) = w(α) + σ0(α) · ε+ τ (α) · ∇α
+ 1

2
E(α)ε · ε+ Λ(α) · (ε⊗∇α) + 1

2
Γ(α)∇α · ∇α (19)

where the dot denotes the inner product between vectors or tensors of the same order. In
(19) appear new functions of the damage variable, namely τ (α) ∈ Rn, Λ(α) ∈ Mn

s ⊗ Rn and
Γ(α) ∈Mn

s , while σ0(α) denotes a damage dependent prestress. Since we have omitted this term
in the local form W0 of the strain work, we still omit it here:

σ0(α) = 0.

The other two terms w(α) and 1
2
E(α)ε · ε were already in W0.

If we assume that the material is isotropic and that the damage variable is a an objective
scalar (i.e. invariant in any change of frame), then W must satisfy the following invariance
conditions:

W(QεQT , α,Q∇α) = W(ε, α,∇α), ∀Q ∈ On, ∀(ε, α,∇α) ∈Mn
s×[0, αm]×Rn (20)

where On denotes the complete orthogonal group. Consequently, it is possible to prove that the
vector τ (α) and the third order tensor Λ(α) necessarily vanish:

τ (α) = 0, Λ(α) = 0.
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Moreover the second order tensor Γ(α) is necessarily proportional to the identity. For obvious
reasons, if one wants that the gradient damage terms have regularizing effects, then Γ(α) must
be positive definite. That allows us to write

Γ(α) = γ(α)I with γ(α) > 0.

To summarize, for an isotropic material, in a linearized theory and in the absence of prestress,
the strain work state function can read as

W(ε, α,∇α) = w(α) + 1
2
E(α)ε · ε+ 1

2
γ(α)∇α · ∇α. (21)

One sees that W differs from its local homologous W0 only by the quadratic term in ∇α which
involves a new positive scalar function of the damage variable.

3.2. Normalization of the damage variable

At this stage the choice of the damage variable is arbitrary and has no other constraint but that
to describe the evolution of the mechanical properties of the material. The damage parameter can
be changed via a change of variable without changing the model. An infinite number of choices
are possible. A particularly interesting choice consists in taking for the damage variable the
volumic dissipated energy in a homogeneous damage process. That consists in taking ω = w(α)
as the damage variable. With this choice, the hardening properties are simply expressed in terms
of the convexity of the strain work function, see Proposition 1.3.

Another interesting choice from a practical viewpoint consists in changing the damage variable
so that the mutiplicative factor γ(α) becomes a constant. It is even possible to take this constant
equal to 1. Indeed, making the change of variable

α 7→ D = ∆(α) :=

∫ α

0

√
γ(β)dβ,

the new strain work function reads as

Ŵ (ε, D,∇D) = w ◦∆−1(D) + 1
2
E ◦∆−1(D)ε · ε+ 1

2
∇D · ∇D.

However, the variable D has a physical dimension and varies in a range which depends on the
material. In order to compare different materials, it can be interesting to normalize the damage
variable so that it becomes dimensionless and varies in a fixed interval. For instance, in the case
where ∆(αm) < +∞, making the change of variable α 7→ d = ∆(α)/∆(αm), the damage variable
is dimensionless and runs in the interval [0, 1]. However the strain work function becomes

W̌(ε, d,∇d) = w̌(d) +
1

2
Ě(d)ε · ε+

γ

2
∇d · ∇d (22)

and γ > 0 is now a positive material constant which has the dimension of a force.
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In turn, the constant γ can be also normalized, for instance by setting γ = E0`
2, E0 denoting

the Young modulus of the undamaged material. In such a case, ` > 0 is a material characteristic
length. But, if one changes the normalization, for instance by setting γ = w̌(1)ˇ̀2, then one
changes the definition of the characteristic length. So, the characteristic length also depends on
the choice of the normalization. With the choice of d as the damage variable, the behavior of
the material is finally characterized by the functions w̌, Ě and the constant γ.

Conclusion: In the remaining part of these lectures, we will assume that the damage variable
has been chosen in such a manner that it runs in the interval [0, 1] and that γ is a constant with
respect to the damage variable (but γ can depend on the material point). This damage variable
will be still denoted by α. Accordingly, the strain work function reads as:

W(ε, α,∇α) = W0(ε, α) +
γ

2
∇α · ∇α (23)

with

W0(ε, α) = w(α) +
1

2
E(α)ε · ε. (24)

4. The variational formulation of the evolution problem

4.1. The three physical principles

Because of the non local character of the model, the damage evolution law must be formulated
at the level of the whole structure. For that, we propose to use the same three principles of
irreversibility, stability and energy balance as those introduced for the local models. The unique
change is that now the total energy of the structure involves the strain work function W instead
of W0.

Accordingly, with (v, β) ∈ Ct × D0, i.e. with a pair admissible at time t, is associated the
total energy Et(v, β) of the body in its state

Et(v, β) =

∫
Ω
W(ε(v), β,∇β)dx−W e

t (v). (25)

An important change is that the gradient damage field must be in the space L2(Ω) of functions
which are square integrable in order that the energy of the body be finite. The consequence is
that the trace of the damage fields can be defined on the boundary of the domain. Hence one
can prescribe the value of the damage on ∂Ω. However, to simplify the presentation, we will
assume that no constraint is prescribed to the damage on the boundary. Accordingly, the set of
admissible damage fields is D0 = H1(Ω, [0, 1]).

The evolution problem reads as
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PB 3. The evolution problem consists in finding, for every t ≥ 0, (ut, αt) ∈ Ct ×D0 such that

(IR) t 7→ αt must be non decreasing;

(ST) (ut, αt) must be stable in the sense that:

∀(v, β) ∈ Ct ×D(αt), ∃h̄ > 0, ∀h ∈ [0, h̄],

Et(ut + h(v − ut), αt + h(β − αt)) ≥ Et(ut, αt);

(EB) The balance of energy must hold:

Et(ut, αt) = E0(u0, α0) +

∫ t

0

(∫
Ω
σt′ · ε(U̇t′)dx−W e

t′(U̇t′)− Ẇ e
t′(ut′)

)
dt′.

The evolution problem PB 3 is formally the same as PB 2. But, of course, because of
the presence of gradient damage terms in the energy, the two problems do not admit the
same solutions. Note also that the properties of irreversibility, stability and energy balance are
invariant by change of the damage variable. Therefore, if they are satisfied for the normalized
model, they are satisfied by any other represent of the same model.

4.2. The first order local conditions

Let us assume that PB 3 admits a solution, that this solution is regular both in space and
time. Moreover, we will only consider times when there is no part in the body which is fully
damaged, i.e. we assume that αt < 1 everywhere in Ω. Let us derive necessary conditions that
such a solution must satisfy. Dividing (ST) by h > 0 and passing to the limit when h→ 0, one
obtains the first order conditions that (ut, αt) must satisfy at time t:

E ′t(ut, αt)(v − ut, β − αt) ≥ 0, ∀(v, β) ∈ Ct ×D(αt) (26)

where E ′t(ut, αt)(ū, β̄) denotes the directional derivative of Et at (ut, αt) in the direction (ū, β̄),
i.e. the linear form defined by

E ′t(ut, αt)(ū, β̄) =

∫
Ω
σt · ε(ū)dx−W e

t (ū) +

∫
Ω

(
∂W0

∂α
(ε(ut), αt)β̄ + γ∇αt · ∇β̄

)
dx.

Taking β = αt in (26) and noting that Ct is an affine space, then one recovers the variational
formulation of the equilibrium, i.e.∫

Ω
σt · ε(ū)dx = W e

t (ū), ∀ū ∈ C0. (27)
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Inserting into (26) gives the variational formulation of the non local damage criterion. Specifi-
cally, one gets∫

Ω

(∂W0

∂α
(ε(ut), αt)(β − αt) + γ∇αt · ∇(β − αt)

)
dx ≥ 0, ∀β ∈ D(αt). (28)

After an integration by parts in (28), one gets: ∀β ∈ D(αt),∫
Ω

(∂W0

∂α
(ε(ut), αt)− div

(
γ gradαt

))
(β − αt)dx+

∫
∂Ω
γ
∂αt
∂n

(β − αt)dS ≥ 0 (29)

where n denotes the unit outer normal to Ω. Under the condition that the fields are sufficiently
smooth, a classical argument of Calculus of Variations leads to the following local conditions

∂W0

∂α
(ε(ut), αt)− div

(
γ gradαt

)
≥ 0 in Ω , γ

∂αt
∂n
≥ 0 on ∂Ω . (30)

Therefore, (30) constitutes the damage yield criterion for a gradient damage model. If we
compare them to their homologous (11) for local damage models, one sees that the damage
yield criterion in the bulk now contains a term involving the second spatial derivatives of the
damage field. Let us also that they give natural boundary conditions for the normal derivative
of the damage field, but that those conditions are inequalities.

Let us now use the energy balance with the same assumptions on the regularity and the
absence of fully damaged zone. Differentiating (EB) with respect to t leads to

0 =
d

dt
Et(ut, αt)−

∫
Ω
σt · ε(U̇t)dx+W e

t (U̇t) + Ẇ e
t (ut)

=

∫
Ω
σt · ε(u̇t − U̇t)dx−W e

t (u̇t − U̇t) +

∫
Ω

(∂W0

∂α
(ε(ut), αt)α̇t + γ∇αt · ∇α̇t

)
dx

=

∫
Ω

(∂W0

∂α
(ε(ut), αt)α̇t + γ∇αt · ∇α̇t

)
dx.

The first two terms of the second line cancel by virtue of the equilibrium (27). Integrating by
parts the damage gradient term leads to

0 =

∫
Ω

(∂W0

∂α
(ε(ut), αt)− div(γ gradαt)

)
α̇tdx+

∫
∂Ω
γ
∂αt
∂n

α̇tdS.

Finally, it suffices to take account of the irreversibility condition which requires that α̇t ≥ 0 and
of the damage criterion (30) for obtaining the desired consistency conditions

α̇t

(∂W0

∂α
(ε(ut), αt)− div

(
γ gradαt

))
= 0 in Ω , α̇tγ

∂αt
∂n

= 0 on ∂Ω . (31)

Remark 3. The set (30)-(31) of local conditions for gradient damage models are obtained here
from the variational principles of stability and energy balance. They correspond to the conditions
which are set a priori in the literature, see Comi (1999), Lorentz and Andrieux (2003).
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4.3. The second order stability conditions

The damage yield conditions (30) are only necessary stability conditions. They are in general
not sufficient and one must also consider second order stability conditions in order that (ST) be
satisfied. Let us establish these second order stability conditions. Let (ut, αt) be a state at time
t which satisfies the first order stability conditions (26) (or equivalently (27) and (28)). Let us
set (ū, β̄) = (v − ut, β − αt) and let us express (ST) by expanding Et(ut + hū, αt + hβ̄) with
respect to h up to the second order. That leads to

0 ≤ hE ′t(ut, αt)(ū, β̄) +
h2

2
E ′′t (ut, αt)(ū, β̄) + o(h2) (32)

where E ′′t (ut, αt) denotes the second derivative of Et at (ut, αt). It is a quadratic form with
respect to (ū, β̄). Using the compliance function S(α) = E(α)−1 and this derivative with respect
to α, the second derivative of the energy E ′′t (ut, αt) reads as

E ′′t (ut, αt)(ū, β̄) =

∫
Ω
E(αt)

(
ε(ū)− β̄ S′(αt)σt

)
·
(
ε(ū)− β̄ S′(αt)σt

)
dx+

∫
Ω
γ∇β̄ · ∇β̄dx

+

∫
Ω

(
w′′(αt)− 1

2
S′′(αt)σt · σt

)
β̄2dx. (33)

By virtue of (26), the first term in the right hand side of (32) is non negative. If it is positive,
then, for h small enough, the inequality (32) is satisfied and the state (ut, αt) is stable in the
direction (ū, β̄). On the other hand, if the first order term vanishes, then the state is stable in
the direction (ū, β̄) only if the second derivative is non negative (and it will be stable in that
direction if the second derivative is positive).

Let us note that the first two terms in the expression (33) of the second derivative are non
negative by virtue of the positivity of E and γ. The sign of the last term in (33) depends on the
sign of w′′(αt)− 1

2
S′′(αt)σt · σt which is positive in the case of a stress-hardening behavior and

negative in the case of a stress-softening behavior. Let us discriminate between the two cases.

1. Case of stress-hardening. In such a case the second derivative is positive in any direction
(ū, β̄) 6= (0, 0). Indeed, the second derivative is non negative. It can vanish only if β̄ = 0
and ε(ū) = 0 in Ω and hence, by virtue of the assumption made in Definition 2.1, only if
(ū, β̄) = (0, 0). Therefore, for h small enough, the inequality (32) is satisfied and the state
(ut, αt) is stable in any admissible direction. So, we have obtained that, in the case of stress-
hardening, any state which satisfies the first order stability condition (st) automatically
satisfies the stability condition (ST). In other words, the problems PB 1 and PB 2 are
equivalent.

2. Case of stress-softening. By virtue of (29), the first order term E ′t(ut, αt)(ū, β̄) vanishes if
and only if β̄ = 0 in the part of Ω and the part of ∂Ω where the equality does not hold
in (30). Therefore, let us define Ωa

t and ∂at Ω as the part of the domain and the part of the
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boundary where the damage criterion is satisfied as an equality (we can call such points
damaging points). Specifically,

Ωa
t =

{
x ∈ Ωd

t :
∂W0

∂α
(ε(ut), αt)− div

(
γ gradαt

)
= 0

}
, (34)

∂at Ω =

{
x ∈ ∂dt Ω :

∂αt
∂n

= 0

}
. (35)

Let us consider the directions (ū, β̄) ∈ C0×Dat with

Dat = {β̄ ∈ H1(Ω) : β̄ ≥ 0, β̄ = 0 in Ω\Ωa
t , β̄ = 0 on ∂Ω\∂at Ω}.

In such a direction (and only in these directions), one has E ′t(ut, αt)(ū, β̄) = 0. Accordingly,
the stability of the state in such a direction will depend on the sign of the second derivative.
But in the case of stress-softening, the second derivative is the difference between two non
negative quadratic forms (one corresponding to the sum of the first two terms, the other
to the third term). Accordingly, the study of the sign of the second derivative is equivalent
to compare the ratio of the two quadratic forms to 1. That leads to consider the following
Rayleigh ratio defined on C0×Dat :

Rt(ū, β̄) =

∫
Ω
E(αt)

(
ε(ū)− β̄ S′(αt)σt

)
·
(
ε(ū)− β̄ S′(αt)σt

)
dx+

∫
Ωat

γ∇β̄ · ∇β̄dx∫
Ωat

(
1
2
S′′(αt)σt · σt − w′′(αt)

)
β̄2dx

(36)

In (36) we implicitly assume that Rt(ū, 0) = +∞.

Therefore, the state (ut, αt) will be stable or unstable according to the minimum of the
Rayleigh ratio over C0×Dat is greater or less than 1. Since γ > 0, one sees that the gradient
damage terms have a stabilizing effect. Let us note also that this second order stability
condition is necessarily global, it is a structural property and not only a material property.

Let us summarize all the results that we have obtained in the present section by the following
proposition:

Proposition 4.1. In order that an evolution t 7→ (ut, αt), which starts from (u0, α0) and is
regular both in space and time, satisfies the evolution problem (IR), (ST) and (EB), it is necessary
that this evolution satisfies at each time the equilibrium (27), the irreversibility condition, the
damage criterion (30) and the consistency condition (31). In the case of a stress-hardening
behavior, it is sufficient. However, in the case of a stress-softening, it is also necessary that the
minimum of the Rayleigh ratio be greater or equal to 1 at each time.
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Part II

Stability and uniqueness of
homogeneous responses
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Abstract

A bifurcation and stability analysis is carried out here for a bar made of a material obeying a gradient damage

model with softening. We show that the associated initial boundary-value problem is ill-posed and one should

expect mesh sensitivity in numerical solutions. However, in contrast to what happens for the underlying local

damage model, the damage localization zone has a finite thickness and stability arguments can help in the

selection of solutions. The matter of this part is essentially borrowed from Benallal and Marigo (2007). A more

complete analysis can also be found in Pham et al. (2011b).

5. Setting of the problem

5.1. Constitutive assumptions

We consider a one-dimensional non local damage model in which the damage variable α is a scalar
growing from 0 to infinity1. The behavior of the material at a material point x is characterized
by the state function W which depends on the local strain u′(x) (u denoting the displacement
and the prime denoting the spatial derivative), the local damage value α(x) and the gradient
α′(x) of the damage field at x:

W(u′, α, α′) = 1
2
E(α)u′2 + w(α) + 1

2
E0`

2α′2 (37)

where E(α) represents the Young modulus of the material at the damage state α and w(α) can
be interpreted as the density of the dissipated energy by the material during a homogeneous
damaging process (i.e. a process such that α′ = 0). The constant in front of the damage gradient
term is normalized and ` represents the internal length of the material associated with this
normalization.

5.2. Variational approach in the case of the traction of a bar

In the spirit of the first part of these Lectures, we formulate here the damage constitutive
equations at the level of the whole structure. We consider a homogeneous bar whose natural
reference configuration is the interval (0, L). Thus, L is the bar length. The bar is made of the
non local damaging material characterized by the state function W given by (37). The end x = 0
of the bar is fixed, while the displacement of the end x = L is prescribed by a hard device to a

1 Accordingly, in the present model αm = +∞ and hence the material cannot be fully damaged. This restricted
assumption will be removed in the next part so that cracks can nucleate.
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value increasing with time from 0 to infinity:

ut(0) = 0, ut(L) = tε1L, t ≥ 0, (38)

where t denotes the time, ut is the displacement field of the bar at time t and ε1 =
σ1

E0
is the

elastic yield strain.

The damage evolution problem of the bar is obtained via an energetic variational formulation. We
recall briefly the basic ingredients of a such variational formulation. Let Ct and D be respectively
the affine space of kinematically admissible displacement fields at time t and the convex cone of
admissible damage fields

Ct = {v ∈ H1(0, L) : v(0) = 0, v(L) = tε1L}, (39)

D = {β ∈ H1(0, L) : β(x) ≥ 0}, (40)

H1(0, L) denoting the usual Sobolev space of functions defined on (0, L) which are square
integrable and the first derivative of which is also square integrable. The linear space associated
to Ct is H1

0 (0, L) = {v ∈ H1(0, L) : v(0) = v(L) = 0}.

At any pair (u, α) admissible at time t, we associate the total energy of the bar

(u, α) ∈ Ct ×D 7→ E(u, α) =

∫ L

0
W(u′(x), α(x), α′(x)) dx. (41)

Note that the energy functional does not depend explicitly on time.

By assuming that the bar is undamaged at time t = 0, the damage evolution problem can be
read as (see part I):

PB 4. The evolution problem consists in finding, for t > 0, (ut, αt) ∈ Ct × D satisfying the
following three items

(ir) : α̇t ≥ 0,

(st) : E ′(ut, αt)(v − ut, β − αt) ≥ 0, ∀(v, β) ∈ Ct ×D(αt),

(eb) : E ′(ut, αt)(0, α̇t) = 0,

with the initial condition

α0(x) = 0. (42)

In the statement above E ′(u, α)(v, β) denotes the Gâteaux derivative of E at (u, α) in the
direction (v, β), i.e.

E ′(u, α)(v, β) =

∫ L

0
E(α)u′v′dx+

∫ L

0

((
1
2
E′(α)u′2 + w′(α)

)
β + E0`

2α′β′
)
dx. (43)
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The set of admissible displacement rates u̇ (the dot denoting the time derivative) can be
identified with C1, while the set of admissible damage rates α̇ can be identified with D, the
inequality α̇ ≥ 0 denoting the irreversibility of the damaging process. Accordingly, the evolution
problem can be read in a more condensed form by virtue of the following proposition:

Proposition 5.1. The evolution problem PB 4 is equivalent to

For t > 0, find (ut, αt) ∈ Ct ×D such that (u̇t, α̇t) ∈ C1 ×D
and E ′(ut, αt)(v − u̇t, β − α̇t) ≥ 0 ∀(v, β) ∈ C1×D (44)

with the initial condition (42).

Proof. The proof is left as an exercice. 2

5.3. Nonlinear initial boundary-value problem for the bar

By inserting β = α̇t and v = u̇t + w, with w ∈ H1
0 (0, L), into(44), we obtain the variational

formulation of the equilibrium of the bar, i.e.∫ L

0
E(αt(x))u′(x)w′(x) dx = 0 ∀w ∈ H1

0 (0, L), (45)

from which we deduce that the stress must be uniform:

E(αt(x))u′t(x) = σt, ∀x ∈ (0, L). (46)

By using the boundary condition (38), we obtain the relation between the stress σt and the
damage field αt

εt ≡ tε1 =
σt
L

∫ L

0

dx

E(αt(x))
, (47)

εt representing the overall strain of the bar at time t.

By inserting (45)–(47) into (44) we obtain the variational inequality governing the damage
field evolution:

1
2
σ2
t

∫ L

0

E′(αt)

E(αt)2
βdx+

∫ L

0
w′(αt)βdx+ E0`

2

∫ L

0
α′tβ

′dx ≥ 0, (48)

where the inequality must hold for all β ∈ D and becomes an equality when β = α̇t. After an
integration by parts and by using classical arguments of the calculus of variations, we obtain
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the set of local conditions satisfied by the damage field at any point of (0, L)

Irreversibility condition : α̇t ≥ 0 (49)

Damage yield criterion : f := 1
2
σ2
t

E′(αt)

E(αt)2
+ w′(αt)− E0`

2α′′t ≥ 0 (50)

Consistency condition : α̇t

(
1
2
σ2
t

E′(αt)

E(αt)2
+ w′(αt)− E0`

2α′′t

)
= 0 (51)

with the boundary conditions

α′t(0) ≤ 0, α̇t(0)α′t(0) = 0, α′t(L) ≥ 0, α̇t(L)α′t(L) = 0 (52)

and the initial condition (42). Conditions (49), (50) and (51) are nothing else than the Kuhn-
Tucker conditions α̇t ≥ 0, f ≥ 0 and fα̇t = 0.

5.4. Rate boundary-value problem

The properties of bifurcation, uniqueness or stability of the solutions of the damage evolution
problem can be obtained by analyzing the rate damage problem, i.e. the problem governing
at a given time t the damage rate α̇t by assuming that the damage state αt is known. In its
variational form, the damage rate problem is obtained by differentiating the damage evolution
problem. Let us briefly recall how it is obtained.

Let αt be an admissible damage field and let ut be the associated displacement field giving the
equilibrium of the bar at time t, see (46). The total energy of the bar is given by the functional
α 7→ Ẽt(α) defined on D by:

Ẽt(α) =
E0`

2

2

∫ L

0
α′(x)2dx+

∫ L

0
w(α(x)) dx+

t2ε2
1L

2

2
∫ L

0
dx

E(α(x))

. (53)

Its first directional derivative is the linear form defined on H1(0, L) by

Ẽ ′t(α)(β) =

∫ L

0

(
E0`

2α′β′ + w′(α)β +
t2ε2

1L
2

2
(∫ L

0
dx
E(α)

)2

E′(α)

E(α)2
β

)
dx. (54)

Thus, the variational inequation (48) is equivalent to Ẽ ′t(αt)(β) ≥ 0 for all β ∈ D. Let αt be a
solution at time t. Differentiating once more, we obtain the damage rate problem

Find α̇t ∈ D such that

Ẽ ′′t (αt)(α̇t, β − α̇t) + ˙̃E ′t(αt)(β − α̇t) ≥ 0, ∀β ∈ D (55)

where the second directional derivative Ẽ ′′t (αt) is a bilinear symmetric form defined on H1(0, L)2

and ˙̃E ′t(αt) denotes the partial derivative of Ẽt(α) with respect to t at α = αt (it is a linear
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form defined on H1(0, L)). The explicit expression of Ẽ ′′t (αt) and ˙̃E ′t(αt) will be given in the next
section for a particular model.

6. Bifurcation phenomena with gradient damage model

To simplify the presentation and in order to obtain closed form solutions, we will only consider
in the sequel the following particular damage model:

E(α) =
E0

(1 + α)2
, w(α) =

σ2
1

E0
α, α ≥ 0, (56)

E0 denoting the initial Young modulus, σ1 the elastic yield stress and ` the internal length of
the material.

In this case, the damage yield criterion (50) and the relation (47) become

E2
0`

2α′′t (x) + σ2
t (1 + αt(x)) ≤ σ2

1, ∀x ∈ (0, L), (57)

σt =
tσ1L∫ L

0 (1 + αt(x))2 dx
. (58)

Moreover the second derivative reads as

Ẽ ′′t (αt)(β) = E0`
2

∫ L

0
β′2 dx+

4σ3
t

tE0σ1L

(∫ L

0
(1 + αt)β dx

)2

− σ2
t

E0

∫ L

0
β2 dx, (59)

where σt denotes the equilibrium stress associated to the homogeneous damage αt, see (58), and

˙̃E ′t(αt)(β) = −2σ2
t

tE0

∫ L

0
(1 + αt)β dx. (60)

For t ∈ [0, 1), the response of the bar is elastic, the damage field remains at its initial value
0, the inequality in (57) is strict. At time t = 1, the inequality is an equality at every material
point and the damage can evolve everywhere. The goal of this section is to prove that we can
construct a continuum of solutions for the damage evolution problem for t > 1, when the length
of the bar is sufficiently large. Let us first note that, in any interval where the damage yield
criterion (57) is satisfied as an equality at time t (such points are called damaging points), the
damage field is given by

αt(x) =
σ2

1

σ2
t

− 1 + at sin
σx

E0`
+ bt cos

σx

E0`
(61)

where at and bt are two time dependent scalars.
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6.1. The homogeneous solution.

The homogeneous solution corresponds to the solution where the damage field is uniform at each
time, αt(x) = αt. This solution always exists and we easily deduce from (57) and (58) that

σt = t−1/3σ1, αt = t2/3 − 1, ∀t > 1. (62)

In a diagram σ− ε, σ being the equilibrium stress and ε the overall strain of the bar (εt = tε1),
the overall response of the bar corresponds to the descending branch in Figure 6.1, showing a
softening behavior of the material.

Ε1
Ε

Σ1
Σ

Figure 1. Homogeneous response of the bar: the segment line corresponds to the elastic response (αt = 0,
0 ≤ t < 1), the decreasing branch corresponds to a spatially uniform damage growing with time (αt(x) = t2/3−1).

6.2. Uniqueness criterion

To see whether the solution can be unique, we can use the damage rate problem (55). Let αt
and σt be the homogeneous solution at time t of the evolution problem and given by (62). The
rate variational problem admits the solution α̇t(x) = 2

3 t
−1/3 for all x ∈ (0, L) which corresponds

to the rate of the homogeneous solution. This will be the unique solution provided E′′t (αt) is a
definite positive quadratic form on H1(0, L). Here, the second derivative reads as

Ẽ ′′t (αt)(β) = E0`
2

∫ L

0
β′2 dx+

4σ2
t

E0L

(∫ L

0
β dx

)2

− σ2
t

E0

∫ L

0
β2 dx. (63)

By introducing the Rayleigh ratio Rt defined on H1(0, L) \ {0} by

Rt(β) =

E0`
2

∫ L

0
β′2 dx+

4σ2
t

E0L

(∫ L

0
β dx

)2

σ2
t

E0

∫ L

0
β2 dx

, (64)
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it immediately appears that

The rate damage problem admits a unique solution if minH1(0,L)\{0}Rt > 1.

After some calculations, too long to be reported here (see Pham et al. (2011b)[Appendix]), we
obtain

min
H1(0,L)\{0}

Rt = min

{
4,

(
σc
σt

)2
}

(65)

where

σc = πE0
`

L
. (66)

Thus, we can conclude that

1. If σ1 ≤ σc, i.e. if L ≤ π`/ε1, then the homogeneous solution is the unique solution of the
damage evolution problem. This feature can be used for instance in an experimental setting
to identify properly the homogeneous behaviour of the material.

2. If σ1 > σc, i.e. if L > π`/ε1, then the homogeneous damage rate α̇t = 2
3 t
−1/3 is the unique

solution of the rate damage problem provided that σt < σc, i.e. when t >
σ3

1
σ3
c
. Bifurcations

are eventually possible from the homogeneous solution at any time in the interval [1,
σ3

1
σ3
c
].

When available, first bifurcation will occur at t = 1.

6.3. Examples of bifurcated branches at t=1

To construct non homogeneous solutions, we can investigate solutions where the equality in (57)
holds only in a time-dependent part of the bar, i.e the bar elastically unloads with the initial
stiffness E0 in the rest part. Different scenarii may exist depending on the length of the bar.

For instance, one can assume that the equality holds in the interval (0, Dt) and in this case
we obtain the following solution

αt(x) =

 2
(σ2

1

σ2
t

− 1
)

cos2 πx

2Dt
, if 0 ≤ x ≤ Dt

0 , otherwise
, (67)

where the width Dt is related to the stress equilibrium σt by

Dt = π
E0

σt
` (68)

and the overall response reads as

t =
σt
σ1

+
σc
2σ1

(
3
σ4

1

σ4
t

− 2
σ2

1

σ2
t

− 1

)
. (69)

35



This half-sinusoidal damage field can appear provided that the bar is long enough so thatD1 ≤ L,
i.e. provided that σc < σ1. The length D1 is the size of the damaging zone just after t = 1. For
t > 1, the irreversibility condition (49) is satisfied and the damage grows provided that 4σc > σ1.
So, if

ε1

4
≤ π `

L
≤ ε1, (70)

the solution is valid as long as Dt ≤ L, i.e. for t ∈ [1, tc] with

tc =
σ2

1

σ2
c

(
3
σ2

1

σ2
c

− 2

)
. (71)

During this time interval, the damaging zone extends gradually to all the bar, cf. Figure 6.3.

Remark 4. 1. One can construct symmetrically one half-sinusoidal damage field in the interval
(L−Dt, L). The global response is the same.

2. At t = tc the tip of the damaged zone reaches the end x = L and can no more propagate. To
continue this branch, we must consider solutions in which a part of the bar is in an unloading
phase (the inequality is then strict in (57)). The details are not given here.

3. If the bar is too small, i.e. if L < π`/ε1, then the half-sinusoidal damage field cannot appear
for lack of place. We recover the uniqueness property that we have obtained from the rate
damage problem.

4. If the bar is too long, i.e. if L > 4π`/ε1, then the global response σ− ε has a snap-back near
(ε1, σ1), i.e. dσ

dε (ε1−) > 0, cf. Figure 6.3. So, since the overall strain εt = tε1 must increase,
the stress must brutally decrease and the damage field must brutally increase. The response
is no more continuous in time.

Other similar but qualitatively different solution is when the equality holds in the interval
(x0−Dt, x0 +Dt) where Dt is a variable length and x0 is a given point. We obtain the following
solution

αt(x) =

 2
(
σ2

1

σ2
t
− 1
)

cos2 π(x− x0)

2Dt
, if |x− x0| ≤ Dt

0 , otherwise
, (72)

with Dt still given by (68), but the overall response reads now as

t =
σt
σ1

+
σc
σ1

(
3
σ4

1

σ4
t

− 2
σ2

1

σ2
t

− 1

)
. (73)

This sinusoidal damage field can appear, centered at a given point x0, provided that the bar is
long enough. Let us consider the case where x0 = L/2. The sinusoidal damage field can appear,
centered at the middle of the bar, if 2D1 ≤ L, i.e. provided that 2σc ≤ σ1. The length 2D1 is
the size of the damaging zone just after t = 1. For t > 1, the irreversibility condition (49) is
satisfied and the damage grows provided that 8σc ≥ σ1. So, if

ε1

4
≤ 2π

`

L
≤ ε1, (74)
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A

B

Figure 2. Global response of the bar corresponding to the growing of one half-sinusoidal damage field (thick line)
compared to the homogeneous response (thin line). The length is sufficiently large (L > 4π`/ε1) and a snap-back is
present at the bifurcation point A. Consequently, the initiation of damage will be discontinuous, the global response
must jump from A to B or to a point below B at time t = 1.

the solution is valid as long as 2Dt ≤ L, i.e. for σt ∈ [2σc, σ1]. During this time interval, the
damaging zone extends gradually to all the bar, cf. Figure 6.3.

D1 L
x

1

Α

L!2 L
x

1

Α

Figure 3. On the left: Growing of one half-sinusoidal damage field starting at the end x = 0. The size of the
damaged zone is equal to D1 at t = 1+, then increases progressively with t and all the bar is damaged at t = tc.
On the right: Growing of one sinusoidal damage field centered at the middle of the bar. The size of the damaging
zone is equal to 2D1 at t = 1+, then increases progressively with t untill all the bar is damaging.

If the bar is longer, one can construct solutions with n sinusoidal waves and in this case (69)
is simply replaced by

t =
σt
σ1

+ n
σc
σ1

(
3
σ4

1

σ4
t

− 2
σ2

1

σ2
t

− 1

)
. (75)

The global responses corresponding to these non homogeneous solutions are plotted in Figure 6.3.
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Ε1
Ε

Σ1

Σ

Figure 4. In thin lines, the global response due to the growing of n-sinusoidal damage fields. The lowest curve
corresponds to n = 0.5, the next to n = 1, . . . . The number of curves depends on the length of the bar: the longer
is the bar, the larger is the number of curves. The curve n stops when the n-sinusoidal damage field covers all the
bar.

6.4. Bifurcation from the homogeneous branch.

We propose to construct in this subsection a continuum of solutions for the damage evolution
problem by considering bifurcation branches from any point of the homogeneous one when the
length of the bar is sufficiently large. We assume that

L > π`/ε1 (76)

and we proceed as follows

1. Let αb > 0 be a given value of the damage variable. In the case of the homogeneous response,
the corresponding time at which this damage state is reached, the corresponding overall
strain and the corresponding equilibrium stress are given by

tb = (1 + αb)
3/2, εb = (1 + αb)

3/2ε1, σb =
σ1√

1 + αb
. (77)

2. For t > tb, we seek for a non homogeneous solution, the damage growing in the part (0, Dt)
of the bar while the damage remains at the value αb in the remainder part (Dt, L) of the
bar. By using (57)–(61) we find

αt(x) =

{
αb + 2

(
σ2

1

σ2
t
− 1− αb

)
cos2 πx

2Dt
, if 0 ≤ x ≤ Dt

αb , otherwise
, (78)

with

Dt = π
E0

σt
` (79)
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and

t = (1 + αb)
2 σt
σ1

+
σc
2σ1

(
3
σ4

1

σ4
t

− 2(1 + αb)
σ2

1

σ2
t

− (1 + αb)
2

)
. (80)

The damage field corresponds to the growing of one half-sinusoid from the initial value αb, cf.
Figure 6.4. This solution is valid as long as Dt ≤ L, i.e. as long as σt ≥ σc. So the value of
the initial damage αb must be chosen arbitrarily provided that σb > σc. Accordingly, by taking

αb ∈ [0,
σ2

1
σ2
c
− 1), we have obtained an infinite family of solutions indexed by αb, cf. Figure 6.4.

L
x

Αb

Α

Figure 5. Growing of one half-sinusoidal damage field from an initially homogeneous damage state αb.

Remark 5. These results reinforce those we have obtained from the rate damage problem, since
they prove that a bifurcation from the homogeneous branch is really possible at any time in the

interval [1,
σ3

1
σ3
c
].

Ε1
Ε

Σ1

Σb

Σc

Σ !i"
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Ε
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Σc

Σ !ii"

Ε1
Ε

Σ1

Σc

Σ

Figure 6. (i) Thick black line: the bifurcated branch; Thin line: the homogeneous branch; Thick gray line: the one
half-sinusoidal damage branch. (ii) Gray area: the continuum of possible global responses due to the possibility
of a bifurcation at any point of the homogeneous branch.
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7. Stability and selection of solutions

7.1. Stability criterion

The previous analysis shows that the damage evolution problem is ill-posed in the sense that
it admits a continuum family of solutions . Therefore, the question of selection of the solutions
raises in order to choose those solutions that can be really observed. We suggest here to answer
this question by stability considerations and postulate that the solutions that are potentially
feasible are the stable ones. And more precisely, those solutions that minimize the total energy.
Following the idea presented in part I, we can use the stability condition (ST) that we briefly
recall below2. Let αt be an admissible damage field and let ut be the associated displacement
field giving the equilibrium of the bar at time t, i.e.

E(αt(x))u′t(x) = σt, ∀x ∈ (0, L), with σt =
tε1L∫ L

0
dx

E(αt(x))

. (81)

The total energy of the bar is given by the functional α 7→ Ẽt(α) defined on D by (53). We say
that the bar is stable at time t in its damaged state αt if and only if αt is a unilateral local
minimum of Ẽt on D, i.e.

(ST) ∀β ∈ D, ∃h̄ > 0 such that ∀h ∈ [0, h̄], Ẽt(αt) ≤ Ẽt(αt + hβ).

Let us note that we have only to compare the energy of αt with the energy of the damage states
which are accessible from αt. This unilateral restriction is due to the irreversibility condition.
This condition means that, if we can find in a neighborhood of αt an accessible damage state
with a smaller energy, then the state αt is unstable and the bar will evolve spontaneously to
some state with a smaller energy.

7.2. Stability of the homogeneous states

For illustration, we will only study the stability of the homogeneous states of the bar, the analysis
can be extended to the other solutions but is too long to be reported here. Let αt = t2/3 − 1 be
the homogeneous damage state of the bar at the time t > 1, h > 0 and β ∈ D. By developing
Ẽt(αt + hβ) with respect to h, we get

Ẽt(αt + hβ) = Ẽt(αt) + hẼ ′t(αt)(β) + 1
2
h2Ẽ ′′t (αt)(β) + o(h2), (82)

where the primes denote directional derivatives. Since Ẽ ′t(αt)(β) = 0, the stability condition
consists in finding the sign of the second derivative in any positive direction β. In the particular

2 Here the stability condition is formulated in terms of the damage field alone because the displacement field
has been eliminated by using the equilibrium equation.
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Table I. Stability of an homogeneous state
and possibility of bifurcation from this
state following the value of the equilibrium
stress.

Case Stability Bifurcation

σt > 4σc No Yes

σc < σt < 4σc Yes Yes

σt < σc Yes No

case of the model (56), the second derivative is given by (59). By considering the Rayleigh
ratio (64), it immediately appears that for the the homogeneous damage state αt to be stable,
it is necessary that minD\{0}Rt ≥ 1 . It is sufficient however for this state to be stable that
minD\{0}Rt > 1. After some calculations which are not reproduced here (see Pham et al.
(2011b)[Appendix]), we obtain

min
D\{0}

Rt = min

{
4,

(
4σc
σt

)2/3
}

(83)

and we can conclude that

1. If σ1 ≤ 4σc, i.e. if L ≤ 4π`/ε1, then all the homogeneous damage states are stable.

2. If σ1 > 4σc, i.e. if L > 4π`/ε1, then only the homogeneous damage states at t ≥
(
σ1
4σc

)3
are

stable. Consequently, since the beginning of the homogeneous branch is not stable, the bar
cannot be deformed uniformly and a non homogeneous solution will appear at t = 1.

Let us now compare the properties of stability and of bifurcation that we have obtained for
the homogeneous solution. Since D is included in H1(0, L), we always have

4 ≥ min
D\{0}

Rt ≥ min
H1(0,L)\{0}

Rt

and uniqueness of the rate solution implies stability of the state. But the converse is not always
true, a homogeneous state could be stable even if a bifurcation is possible at this point. Let
us examine the different cases, αt and σt are still given by (62). Now, if we consider bars with
different length, we obtain the following scenarii:

1. Small bars: L < π`/ε1. All the homogenous sates are stable and no bifurcation is possible.
The homogeneous response is the unique solution of the damage evolution problem.
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2. Intermediate bars: π`/ε1 < L < 4π`/ε1. All the homogenous sates are stable, but bifurcations

are possible in the time interval [1,
σ3

1
σ3
c
].

3. Long bars: L > 4π`/ε1. Since the homogeneous states are unstable for t ∈ [1,
σ3

1
64σ3

c
), a non

homogeneous solution appears at t = 1.

8. Conclusions

A bifurcation and stability analysis was undertaken here for a simple gradient damage model
in one-dimensional situation. The full nonlinear initial value problem was solved in closed form
for a bar with a finite length. A uniqueness criterion was obtained as well as conditions for
bifurcation. These are mainly dependent on the ratio L/` between the length of the bar to the
internal lengthscale involved in the model. The longer the bar (or the smaller the lengthscale),
the more solutions are obtained. The localization zone, represented here by the damaged zone,
has always a finite thickness. However, in contrast to the underlying local model where all the
damaged states are shown to be unstable, we have shown the existence of stable states and paths
for the gradient model and we suggested that these stable paths can be selected (among all the
solutions) as potential responses of the bar.

How these stability and uniqueness properties can be used to identify the state functions
α 7→ E(α), α 7→ w(α) and the internal length ` characterizing the material behavior is explained
in Pham et al. (2011b). Extension of the results to three-dimensional situations and their links
with the Hill’s general theory of uniqueness and stability (Hill, 1958) can be found in Pham and
Marigo (2013b).
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Part III

Damage localization and crack
nucleation
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Abstract

In this part we construct solutions with damage localization until rupture for the traction problem of a bar made

of a strongly brittle material. We show that damage localization necessarily develops on parts of the bar whose

length is proportional to the material internal length and with a profile which is also a material characteristic.

From its onset until the rupture, the damage profile is obtained either in a closed form or after a simple numerical

integration. Thus, the proposed method provides definitions for the critical stress and fracture energy that can

be compared with experimental results. The matter of this part is essentially borrowed from Pham and Marigo

(2013a). A similar analysis can also be found in Pham et al. (2011b).

9. Setting of the damage problem

9.1. The gradient damage model

We consider a one-dimensional gradient damage model in which the damage variable α is a
real number growing from 0 to 1, where α = 0 is the undamaged state and α = 1 is the full
damaged state. The behavior of the material is characterized by the state function W which
gives the energy density at each point x. It depends on the local strain ε(x) (if u denotes the
displacement field, then ε(x) = u′(x) where the prime stands for the spatial derivative), the
local damage value α(x) and the local gradient α′(x) of the damage field at x. Specifically, we
assume that W takes the following form

W(ε, α, α′) =
1

2
E(α)ε2 + w(α) +

1

2
w1`

2α′2. (84)

In (84), w1 := w(1) represents the energy dissipated in completely damaged volume element and
E(α) the Young modulus of the material in the damage state α. The second term w(α) can be
interpreted as the density of energy dissipated by the material during a homogeneous damage
process (i.e. a process such that α′(x) = 0) during which the damage variable grows from 0 to
α. The last term in (84) is the “non local” part of the energy which plays, as we will see in
the next section, a regularizing role by limiting the possibilities of localization of the damage
field. For obvious reasons of physical dimension, this term involves a material characteristic
length ` which will give the size of the damage localization zone. Denoting by σ the stress, the
stress-strain relation reads as

σ = E(α)ε. (85)

The expression of the energy density (84) is analog to the one proposed by (Comi and Perego,
2001). It implicitly assumes a symmetric behavior in tension and compression. It must be
modified to take into account asymmetric behaviors, like in (Comi, 2001) or (Pham and Marigo,
2010a; Pham and Marigo, 2010b). While remaining within the framework of symmetric behavior,
a model which can seem more general would consist in replacing the constant w1`

2 by a function
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of α. It can be shown in fact that after an adequate change of variable, the damage parameter α
can always be chosen so that the function becomes a constant, see Pham and Marigo (2010b).
We thus assume here that the damage parameter has been chosen to this end. Note that another
choice was made in Pham et al. (2011b).

The qualitative properties of the (gradient or local) model, in particular its softening or
hardening character, strongly depend on some properties of the stiffness function α 7→ E(α),
the dissipation function α 7→ w(α), the compliance function α 7→ S(α) = 1/E(α) and their
derivatives. From now on we will adopt the following hypothesis:

Hypothesis 1 (Strongly brittle materials). α 7→ E(α) and α 7→ w(α) are non negative and (at
least) twice continuously differentiable functions on [0, 1) such that

E(0) = E0 > 0, E′(α) < 0, E(1) = 0, (86)

w(0) = 0, w′(α) > 0, w(1) < +∞, (87)

α 7→ −w′(α)/E′(α) is non decreasing, (88)

α 7→ w′(α)/S′(α) is decreasing to 0. (89)

This corresponds to the family of strongly brittle materials with softening defined in Pham et al.
(2011b).

Let us comment this Hypothesis before giving an example

1. The interval of definition of α can always be taken as [0, 1] after a change of the damage
variable;

2. The condition E′ < 0 denotes the decrease of the material stiffness when the damage grows;

3. The condition E(1) = 0 ensures the total loss of stiffness when α = 1;

4. The positivity and the monotonicity of w is natural since w(α) represents the energy dissi-
pated during a damage process where the damage grows homogeneously in space from 0 to
α;

5. The boundedness of w is characteristic of strongly brittle materials with softening; this
condition disappears in the case of weakly brittle materials with softening or in the case of
brittle materials with hardening;

Remark 6. This condition plays an essential role in order to construct damage localization
up to the rupture of the bar. It was not satisfied in the model used in part II which belongs
to the family of weakly brittle damage models in the sense of Pham et al. (2011b).

6. The condition of monotonicity of w′/E′ is introduced for the sake of simplicity and is
unessential. In a homogeneous strain and damage response, it denotes that the strain does
not decrease when the damage grows, see Section 2.3. This refers to the strain-hardening
property;
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7. The condition of monotonicity of w′/S′ is essential; it denotes the softening property. In
a homogeneous strain and damage response, this property leads to the decreasing of the
corresponding stress when the damage grows, see Section 2.3;

8. The condition limα→1w
′(α)/S′(α) = 0 ensures that the material cannot sustain any stress

when its damage state is 1.

Example 5. A family of models which satisfy the assumptions above is the following one, when
q > p > 0:

E(α) = E0(1− α)q, w(α) =
qσ2

c

2pE0

(
1− (1− α)p

)
. (90)

It contains five material parameters: the sound Young modulus E0 > 0, the dimensionless
parameters p and q, the critical stress σc > 0 and the internal length ` > 0 whose physical
interpretation will be given in Section 10.2.

The condition q > 0 is necessary and sufficient in order that α 7→ E(α) be decreasing from E0

to 0 while the condition p > 0 is necessary and sufficient in order that α 7→ w(α) be increasing
from 0 to a finite value. If p > 0 and q > 0, then the condition q > p is necessary and sufficient
in order that α 7→ −w′(α)/E′(α) be increasing to ∞ while α 7→ w′(α)/S′(α) is automatically
decreasing to 0.

A particularly interesting class of materials which satisfy the conditions of Hypothesis 1 is
that of perfectly brittle materials which corresponds to the models in which p = q > 0 in the
previous example. By definition, these materials are such that w′/E′ is constant. This leads to
the following definition:

Hypothesis 2 (Perfectly brittle materials). They are strongly brittle materials such that w′/E′

is constant. Accordingly, these materials are characterized by the unique state function α 7→ E(α)
which is twice continuously differentiable and must satisfy

E(0) = E0 > 0, E′(α) < 0 ∀α ∈ [0, 1), E(1) = 0, (91)

while w(α) is given by

w(α) = (E0 − E(α))
ε2
c

2
, (92)

where εc is a given positive constant.

9.2. The damage problem of a bar under traction

Let us consider a homogeneous bar whose natural reference configuration is the interval (0, L) and
whose cross-sectional area is 1. The bar is made of the nonlocal damaging material characterized
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by the state function W given by (84). The end x = 0 of the bar is fixed, while the displacement
of the end x = L is prescribed to a value Ut

ut(0) = 0, ut(L) = Ut ≥ 0, t ≥ 0 (93)

where, in this quasi-static setting, t denotes the loading parameter or shortly the “time”, and ut
is the displacement field of the bar at time t. The dependence of Ut on t is assumed to be smooth,
at least continuous and piecewise continuously differentiable. The evolution of displacement and
of damage in the bar is obtained using a variational formulation, the main ingredients of which
are recalled hereafter, see Benallal and Marigo (2007) for details and Pham and Marigo, Pham
and Marigo (2010a, 2010b), Pham et al. (2011a) and Pham et al. (2011b) for a general discussion
on the variational formulation of damage evolution problems.

For a given U ∈ R, we denote by CU the set of “smooth” fields v defined on [0, L] and such
that v(0) = 0, v(L) = U , i.e.

CU =
{
v ∈ H1(0, L) : v(0) = 0, v(L) = U

}
(94)

where H1(0, L) denotes the usual Sobolev space of functions which belong to L2(0, L) and whose
distributional first derivative also belongs to L2(0, L). Accordingly, CUt and CU̇t denote the sets
of kinematically admissible displacement fields and kinematically admissible displacement rate
fields, while C0 is their associated linear space. The set of admissible damage fields is the convex
set D defined by

D =
{
β ∈ H1(0, L) : 0 ≤ β(x) < 1, ∀x ∈ [0, L]

}
. (95)

Let us note that the value 1 for the damage is excluded because some quantities like the
compliance S and its derivatives are no more defined when α = 1. It turns out also that the real
displacement field is no more regular but is discontinuous at points x where α(x) = 1. Since this
situation corresponds to the rupture of the bar, we will merely determine at which time tr that
happens and the analysis will stop at this moment.

By virtue of the irreversibility condition, damage can only grow and accordingly the convex
cone Ḋ of admissible damage rate is given by

Ḋ =
{
β ∈ H1(0, L) : β(x) ≥ 0, ∀x ∈ [0, L]

}
. (96)

With any admissible pair (u, α), we associate the total energy of the bar

E(u, α) :=

∫ L

0
W(u′(x), α(x), α′(x)) dx

=

∫ L

0

(
1

2
E(α(x))u′(x)2 + w(α(x)) +

1

2
w1`

2α′(x)2

)
dx (97)

We are in a position to set the evolution problem. Specifically, for a given initial damage field
α0, the damage evolution problem reads as (see part II, Proposition 5.1):
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PB 5 (Variational damage evolution problem). Find t 7→ (ut, αt) absolutely continuous and
such that

1. For all t ≥ 0, (ut, αt) ∈ CUt ×D,

2. For almost all t > 0, (u̇t, α̇t) ∈ CU̇t × Ḋ,

3. For almost all t > 0 and for all (v, β) ∈ CU̇t × Ḋ, E ′(ut, αt)(v − u̇t, β − α̇t) ≥ 0,

with the initial condition α0(x) = α0(x).

In the third item, E ′(u, α)(v, β) denotes the derivative of E at (u, α) in the direction (v, β)
and is given by

E ′(u, α)(v, β) =

∫ L

0

(
E(α)u′v′ +

(
1

2
E′(α)u′2 + w′(α)

)
β + w1`

2α′β′
)
dx

Remark 7. Note that the second item contains the irreversibility condition α̇t ≥ 0 and that
our formulation makes sense only if the evolution is sufficiently smooth in time. Therefore,
we only consider evolutions such that the displacement field and the damage field are absolutely
continuous functions of time. To enlarge the search to evolutions which are discontinuous in time,
which is often necessary as we will see in the last section, one has to reformulate the evolution
problem and replace the third item by a condition which remains meaningful for discontinuous
evolutions. This is the essence of the variational formulation proposed in the first part of these
Lecture Notes where the third item of PB 5 is replaced by a stability condition and an energy
balance.

10. Preliminary properties of the traction problem

10.1. The local conditions

Choosing β = α̇t and v = u̇t + v0 with v0 ∈ C0 and inserting into the third item of PB 5, we
obtain the variational formulation of the equilibrium of the bar,∫ L

0
E(αt(x))u′t(x)v′0(x) dx = 0, ∀v0 ∈ C0 (98)

From (98), we deduce that the stress is constant all along the bar and hence is only a function
of time

σt = E(αt(x))u′t(x), ∀x ∈ (0, L) (99)
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Dividing (99) by E(αt(x)), integrating over (0, L) and using boundary conditions (93), we find

σt

∫ L

0
S(αt(x))dx = Ut, (100)

which gives the overall force-displacement response of the bar once the damage field is known.

To obtain the damage problem which governs the evolution of the damage field in the bar,
one inserts (98)–(100) into the third item of PB 5. This leads to the variational inequality
governing the evolution of the damage∫ L

0

(
2w′(αt)− σ2

t S
′(αt)

)
(β − α̇t) dx+

∫ L

0
2w1`

2α′t(β
′ − α̇′t)dx ≥ 0 (101)

where the inequality must hold for all β ∈ Ḋ and almost all t ≥ 0. Integrating by parts the
second integral in (101) leads to a new form of the variational inequality:∫ L

0

(
2w′(αt)−σ2

t S
′(αt)−2w1`

2α′′t

)
(β−α̇t) dx+2w1`

2
(
α′t(L)

(
β(L)−α̇t(L)

)
−α′t(0)

(
β(0)−α̇t(0)

))
≥ 0.

(102)
Setting first β = 0 and then β = 2α̇t in (102), we obtain the equality:∫ L

0

(
2w′(αt)− σ2

t S
′(αt)− 2w1`

2α′′t

)
α̇t dx+ 2w1`

2
(
α′t(L)α̇t(L)− α′t(0)α̇t(0)

)
= 0. (103)

Inserting this equality into (102) leads to the following inequality:∫ L

0

(
2w′(αt)−σ2

t S
′(αt)−2w1`

2α′′t

)
β dx+2w1`

2
(
α′t(L)β(L)−α′t(0)β(0)

)
≥ 0, ∀β ∈ Ḋ. (104)

Choosing first β ∈ C∞0 (0, L) ∩ Ḋ, where C∞0 (0, L) denotes the space of indefinitely differentiable
functions with compact support in (0, L), the inequality (103) becomes∫ L

0

(
2w′(αt)− σ2

t S
′(αt)− 2w1`

2α′′t

)
β dx ≥ 0, ∀β ∈ C∞0 (0, L), β ≥ 0,

from which we deduce by standard arguments that the following inequality must hold almost
everywhere in (0, L):

2w′(αt)− σ2
t S
′(αt)− 2w1`

2α′′t ≥ 0. (105)

Choosing now β(x) = (1−x/h)+ in (104) with 0 < h < L, a+ = max{0, a} denoting the positive
part of a, one gets∫ h

0

(
2w′(αt)− σ2

t S
′(αt)− 2w1`

2α′′t

)(
1− x

h

)
dx− 2w1`

2α′t(0) ≥ 0.

Passing to the limit when h goes to 0, one obtains

α′t(0) ≤ 0. (106)
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In the same way, choosing β(x) = (1− (L− x)/h)+ one gets

α′t(L) ≥ 0. (107)

Hence, (102) is satisfied only if (105)–(107) are satisfied. Conversely, one immediately sees that
if (105)–(107) are satisfied, then (102) is also satisfied. Consequently, (102) and (105)–(107) are
equivalent.

Using (105)–(107) and taking into account the irreversibility condition α̇t ≥ 0, (103) gives
the following equalities:(

2w′(αt)− σ2
t S
′(αt)− 2w1`

2α′′t

)
α̇t = 0, α′t(0)α̇t(0) = 0, α′t(L)α̇t(L) = 0, (108)

where the first one must hold almost everywhere in (0, L). Finally, one has obtained the following
fundamental local version of the evolution problem PB 5:

Proposition 10.1. The pair of absolute continuous functions of time t 7→ (ut, αt) ∈ CUt ×D is
solution of PB 5 if and only if, for almost all t ≥ 0, the following conditions hold true

1. Equilibrium : ut(x) = σt
∫ x

0 S(αt(y))dy and Ut = σt
∫ L

0 S(αt(y))dy,

2. Irreversibility : α̇t ≥ 0 a.e. in (0, L),

3. Damage criterion in the bulk : 2w′(αt)− σ2
t S
′(αt)− 2w1`

2α′′t ≥ 0 a.e. in (0, L),

4. Consistency condition in the bulk:
(

2w′(αt)−σ2
t S
′(αt)−2w1`

2α′′t

)
α̇t = 0 a.e. in (0, L),,

5. Damage boundary condition : α′t(0) ≤ 0 and α′t(L) ≥ 0,

6. Consistency condition at the boundary : α′t(0)α̇t(0) = 0 and α′t(L)α̇t(L) = 0.

Remark 8. We have implicitly assumed that x 7→ αt(x) is a sufficiently smooth field so that the
integration by parts which leads to (102) is licit. The damage criterion in the bulk (105) makes
sense provided that αt is at least continuously differentiable. Such a regularity result could be
obtained after a careful treatment of the variational inequality (101), but it is outside the scope
of the present paper and this regularity property will be admitted.

Remark 9. From the variational approach, we have deduced boundary conditions for the damage
field. These natural boundary conditions are due to the fact that no a priori restrictions are
imposed to the damage at the boundaries. Of course, these boundary conditions disappear if we
assume that the end points of the bar cannot be damaged. In such a case, the sets of admissible
damage fields and of admissible rate damage fields become

D = {α ∈ H1
0 (0, L) : 0 ≤ α < 1 in [0, L]}, Ḋ = {α ∈ H1

0 (0, L) : α ≥ 0 in [0, L]}

and the conditions αt(0) = αt(L) = 0, α̇t(0) = α̇t(L) = 0 replace the items 5 and 6 in the setting
of the evolution problem above. More generally, a large variety of boundary conditions can be
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considered in our variational approach. In any case, by duality, a natural condition is associated
with each degree of freedom left by the evolution of damage at the boundary. It is one of the
numerous advantages of the variational approach. In the present paper, since no restrictions
are imposed to the damage at the boundaries, the homogeneous response is possible whereas
the response is necessarily non homogeneous if one constraints the ends to remain undamaged.
However, the construction of the localized solution inside the bar does not depend on the damage
boundary conditions.

In terms of energy, we have the following property

Property 10.2 (Balance of energy). Let us assume that the bar is undamaged and unstretched
at time 0, i.e. α0 = 0 and U0 = 0. By definition, the work done by the external loads up to time
t is given by

We(t) =

∫ t

0
σsU̇sds, (109)

the total dissipated energy in the bar during the damage process up to time t is given by

Ed(t) =
1

2
w1`

2

∫ L

0
α′t(x)2dx+

∫ L

0
w(αt(x))dx, (110)

while the elastic energy which remains stored in the bar at time t is equal to

Ee(t) =
σ2
t

2

∫ L

0
S(αt(x))dx. (111)

By virtue of the conditions of PB 10.1 that the fields have to satisfy, the following balance of
energy holds true at each time:

We(t) = Ee(t) + Ed(t).

Proof. By virtue of the equilibrium condition and by definition of the elastic energy, the
work done by the external load can read as

We(t) =

∫ t

0
σs

(
σ̇s

∫ L

0
S(αs(x))dx+ σs

∫ L

0
S′(αs(x))α̇s(x)dx

)
ds

=

∫ t

0
Ėe(s)ds+

∫ t

0

∫ L

0

σ2
s

2
S′(αs(x))α̇s(x)dx ds.

Using the initial condition and the consistency condition in the bulk, one gets

We(t) = Ee(t) +

∫ t

0

∫ L

0
w′(αs)α̇s dx ds− w1`

2

∫ t

0

∫ L

0
α′′s α̇s dx ds

= Ee(t) +

∫ L

0
w(αt)dx+ w1`

2

∫ t

0

∫ L

0
α′sα̇

′
s dx ds− w1`

2

∫ t

0

(
α′s(L)α̇s(L)− α′s(0)α̇s(0)

)
ds.
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Using once more the initial condition and the consistency condition at the boundary, we obtain
the desired equality. 2

10.2. The homogeneous solution and the issue of uniqueness

If we assume that the bar is undamaged at t = 0, i.e. if α0(x) = 0 for all x, then it is easy to
check that the damage evolution problem admits a solution where αt depends on t but not on x.
This particular solution will be called the homogeneous solution. Let us construct it in the case
where the prescribed displacement is monotonically increasing, i.e. when Ut = tL and under the
stronger assumption that α 7→ −w′(α)/E′(α) is increasing from a positive value to +∞ when α
grows from 0 to 1 (instead of being merely non decreasing as it is stated in Hypothesis 1, see
comment 6).

Since we assume spatial homogeneity for αt, we have ut(x) = tx and it remains to find the
two time functions t 7→ αt and t 7→ σt. From (100), we get σt = E(αt)t. Inserting this relation
into (105) and (108) leads to

t2

2
≤ −w

′(αt)

E′(αt)
, α̇t

(
t2

2
+
w′(αt)

E′(αt)

)
= 0. (112)

Since α0 = 0, the inequality for the damage criterion in (112) is strict at t = 0 and hence by
continuity during a certain time interval. During this time interval, the bar remains undamaged
by virtue of the consistency condition in (112). Hence αt = 0 holds as long as the inequality in
(112) remains strict. Therefore αt remains equal to 0 as long as t ≤ εc with

εc :=

√
2w′(0)

−E′(0)
. (113)

This corresponds to the elastic phase. For t > εc, since −w′/E′ is assumed to be increasing, the
first relation of (112) must be an equality. Therefore αt is given by

αt =

(
−w

′

E′

)−1( t2
2

)
(114)

and grows from 0 to 1 when t grows from εc to ∞. During this damaging phase, the stress σt is
given by

σt =

√
2w′(αt)

S′(αt)
. (115)

Since w′/S′ is decreasing to 0 by virtue of Hypothesis 1, σt decreases from σc to 0 when t grows
from εc to ∞ and the critical stress σc is given by

σc :=

√
2w′(0)

S′(0)
= E0εc. (116)
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This last property corresponds to the softening character of the damage model as it was an-
nounced in comment 7 after Hypothesis 1. Note that σt tends only asymptotically to 0, which
means that an infinite displacement is necessary to break the bar in the case of a homogeneous
response. The damage rate and the stress rate are discontinuous at t = εc. Indeed, just before tc,
one has α̇t = 0 and σ̇t = E0, while, just after, one has α̇t > 0 and σ̇t < 0. For further comparison
with non-homogeneous solutions, let us calculate the stress rate at the beginning of the damage
phase. Differentiating (114) with respect to t gives the damage rate α̇t, while differentiating
(115) with respect to t gives the stress rate σ̇t in terms of α̇t. Combining both relations finally
gives

lim
t↓εc

σ̇t = − E0

2S′(0)2σc
2E0

S′′(0)σc2 − 2w′′(0)
− 1

. (117)

In terms of energy, the dissipated energy during the damage process is given by

Ed(t) = w(αt)L.

Hence, it is proportional to the length of the bar. The total energy spent to obtain a fully
damaged state is equal to w(1)L and hence is finite by virtue of Hypothesis 1.

The non local term has no influence on the homogeneous solution. The length of the bar does
not play a role and the homogeneous response is the same whatever the bar length.

Let us now examine the issue of the uniqueness of the response. In the case of local damage
models (which are obtained by taking ` = 0), it is well known that the evolution problem admits
an infinite number of solution. Does the gradient term ensure the uniqueness? The answer
essentially depends on the ratio L/` of the bar length with the internal length, as it is proved
in part II in a particular case and in Pham et al. (2011b) in the general case. Specifically it was
shown in Pham et al. (2011b)[Proposition 4.4] that a bifurcation from the homogeneous solution
is possible at time t ≥ εc if and only if L ≥ D(t) with

D(t) = π`

√
2w1

σ2
t S
′′(αt)− 2w′′(αt)

.

In particular, a bifurcation can occur at the end of the elastic phase and leads to a non
homogeneous damage evolution if L ≥ Dc with

Dc = π`

√
2w1

σc2S′′(0)− 2w′′(0)
. (118)

The main goal of the next section is to construct explicitly such a bifurcated solution from the
onset of damage to the break of the bar.

We assume throughout this section that the ratio L/` is sufficiently large in order that the
boundary conditions at x = 0 and x = L do not perturb the construction of the non homogeneous
solution.
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11. Construction of non homogeneous solutions

Let us consider a solution of the evolution problem. We deduce from (105) that 0 ≤ σt ≤ σc.
Indeed, σt ≥ 0 by virtue of (93) and (100). Then, integrating (105) over (0, L) and using the
boundary conditions (106) and (107), we obtain

σ2
t

∫ L

0
S′(αt(x))dx ≤

∫ L

0
2w′(αt(x))dx+ 2w1`

2(α′t(0)− α′t(L)) ≤
∫ L

0
2w′(αt(x))dx. (119)

But, since w′/S′ is a decreasing function of α by virtue of Hypothesis 1 and since αt ≥ 0, we
have

2w′(αt(x)) ≤ σc2S′(αt(x)), ∀x ∈ (0, L).

Integrating over (0, L) and inserting the result into (119) gives σ2
t ≤ σc

2. Therefore σc is the
maximal stress that the material can sustain in any evolution and not only during a homogeneous
damage process.

Let us remark that any solution of the evolution problem contains the same elastic phase,
i.e. αt = 0 as long as Ut remains smaller than εcL. Therefore, damage localizations can appear
only when Ut has reached the critical value εcL and hence σt has reached the critical value σc.
This critical time is denoted tc.

The starting point in the construction of non homogeneous solutions is to seek for solutions
for which the equality in (105) holds only in some parts of the bar. For a given t > tc, the damage
field will be characterized by the set St =

⋃
i Sit made of a finite number of intervals Sit where

αt > 0. In [0, L]\St, the material is supposed to be sound and αt = 0. This part of the bar will be
called the (still) elastic part of the bar while the interval Sit will be called a (damage) localization
zone and the damage field inside a (damage) localization profile. We must discriminate an inner
localization zone where Sit is an open interval of the form (xi − Di

t, xi + Di
t) ⊂ (0, L) from a

boundary localization zone where Sit is an interval of the form [0, Di
t) or (L−Di

t, L]. To simplify
the presentation, we first consider the inner localization zones. We will indicate after what is
changed in the case of a boundary localization zone. The successive steps of the construction
are as follows:

1. For a given t > tc, assuming that σt is known, we determine the profile of the damage field
in a localization zone;

2. We study the dependence of the damage profile on the stress σt;

3. We analyze under which condition the irreversibility condition is satisfied.
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11.1. Damage profile in a localization zone

Let σt be the stress at time t > tc, supposed to be known. We know that σtc = σc and that
σt cannot be greater than σc. The limiting case σt = σc will be treated as a particular case
and hence one assumes that σt < σc. We will see that σt = 0 when the damage field takes the
critical value 1 somewhere in the bar. This limiting case will also be treated as a particular case.
Accordingly, by continuity, we first consider the cases where σt ∈ (0, σc).

Throughout the remaining part of this subsection and up to the end of the next one, since t
is fixed, we omit the index t in all quantities which are time-dependent. We omit also the index
i denoting the size D of the considered localization zone (it will appear that this size is, in fact,
the same for all localization zones). Let σ be the stress and Si = (xi −D,xi +D) be a putative
inner localization zone. The damage field α must satisfy

α > 0 and − σ2S′(α) + 2w′(α)− 2w1`
2α′′ = 0 in Si. (120)

Since we assume by construction that the localization zone is matched to an elastic zone where
α = 0 and since α and α′ must be continuous (see Remark 8), the damage field also has to
satisfy the boundary conditions

α(xi ±D) = α′(xi ±D) = 0. (121)

Multiplying (120) by α′ and integrating with respect to x, we obtain the first integral

−σ2S(α) + 2w(α)− w1`
2α′2 = C in Si, (122)

where C is a constant. Using (121) and Hypothesis 1, we get C = −S0σ
2 with S0 = 1/E0 and

(122) can read as
`2α′(x)2 = F(σ, α(x)) in Si. (123)

In (123), F denotes the function defined in [0, σc]× [0, 1) by

F(σ, β) := 2
w(β)

w1
− σ2

w1
(S(β)− S0) . (124)

Since w1
∂F

∂β
(σ, β) = 2w′(β) − σ2S′(β) and since, by virtue of Hypothesis 1, w′(β) > 0 and

1 − σ2S′(β)

2w′(β)
decreases from 1 − σ2/σc

2 > 0 to −∞ when β grows from 0 to 1, there exists a

unique value of β in (0, 1), say α∗(σ), for which ∂F/∂β vanishes:

α∗(σ) =

(
w′

S′

)−1(σ2

2

)
.

Accordingly, F(σ, ·) vanishes at β = 0, is monotonically increasing in the interval (0, α∗(σ)), then
is monotonically decreasing in the interval (α∗(σ), 1) and tends to −∞ when β goes to 1. Hence
there exists a unique value of β in (0, 1), say ᾱ(σ), for which F vanishes:

F(σ, ᾱ(σ)) = 0, α∗(σ) < ᾱ(σ) < 1. (125)
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Since α > 0 and `α′ = ±
√
F(σ, α) in Si, by standard arguments for this type of ordinary

differential equations, one deduces that α′(xi) = 0, α(xi) = ᾱ(σ) and

`α′ =

{
+
√

F(σ, α) in (xi −D,xi)
−
√

F(σ, α) in (xi, xi +D).
(126)

In other words, ᾱ(σ) corresponds to the maximal value of damage (at the given time), taken at
the center of the localization zone. The damage state α∗(σ) corresponds to the damage state
of the bar under the same stress during a homogeneous damage process, see (115). This means
that the center part of any localization damage zone is more damaged while the remaining part
of the bar is less damaged than in a homogeneous process at the same stress level.

The size of the localization zone is deduced from (126) and (121) by integration. It also
depends only on σ and is given by

D(σ) = `

∫ ᾱ(σ)

0

dβ√
2w(β)/w1 − σ2 (S(β)− S0) /w1

. (127)

Hence D(σ) is proportional to the internal length and is finite because the integral is convergent
3. Provided that L ≥ 2D(σ), it is thus possible to insert a localization zone of size 2D(σ) inside
the bar. The position xi of the center can be chosen arbitrarily in the interval [D(σ), L−D(σ)].

We finally deduce from (126) and (121) that, in the localization zone, the damage field is
given by the following implicit relation between x and α:

|x− xi| = `

∫ ᾱ(σ)

α

dβ√
2w(β)/w1 − σ2 (S(β)− S0) /w1

. (128)

The damage field is symmetric with respect to the center of the localization zone, decreasing
continuously from ᾱ(σ) at the center to 0 at the boundary. The spatial regularity of the damage
profile is governed by the regularity of the constitutive functions α 7→ w(α) and α 7→ S(α). Under
Hypothesis 1, x 7→ α(x) as a solution of (120) is at least three times continuously differentiable
in Si provided that σ ∈ (0, σc). The damage profile is even indefinitely differentiable when the
constitutive functions are. We will see in the next subsection that this regularity is lost at the
limit σ = 0.

Remark 10. The size of an inner localization zone and the damage localization profile depend
only on σ. Since σ is a global quantity, all the inner localization zones have the same size and
the same profile at a given time. One can also consider localization zones which start at the
boundary. In such a case, the consistency condition at the boundary enforces that α′tα̇t vanishes
at the boundary and consequently the profile is still given by (127)-(128) with xi = 0 or xi = L
and x ∈ [0, D(σ)] or x ∈ [L−D(σ), L]. In other words, the profile of a localization zone starting

3 Indeed, F(σ, β) behaves like ∂F
∂β

(σ, 0)β near β = 0 and like ∂F
∂β

(σ, ᾱ(σ))(β − ᾱ(σ)) near β = ᾱ(σ). Since
∂F
∂β

(σ, 0) > 0 and ∂F
∂β

(σ, ᾱ(σ)) < 0, the integral is convergent.
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at the boundary is a half of the profile of an inner localization zone, see Figure 7. Accordingly,
the total length of the set S of localization zones is nD(σ) with n the number of half-localization
zones. Note, however, that such a half-localization zone becomes impossible when one changes
the boundary conditions and does not allow that the end of the bar be damaged.

We can summarize our construction of a localized solution by the following property:

Property 11.1 (Profile of a localized damage field). For a given stress σ ∈ (0, σc), the damage
field in an inner localized damage zone (xi −D(σ), xi +D(σ)) is given by (128) while the half-
length D(σ) of the localized damage zone is finite, proportional to the internal length ` and
given by (127). The damage profile is symmetric with respect to the center xi of the localized
damage zone, maximal at the center, the maximal value ᾱ(σ) being given by (125). The damage
profile is a continuously differentiable function of x, decreasing from ᾱ(σ) at the center to 0 at
the boundary of the localized damage zone. The matching with the undamaged part of the bar
is smooth, the damage and the gradient of damage vanishing at the boundary of the localized
damage zone, see Figure 7.

DHΣL xi-DHΣL xi xi+DHΣL
x

Α
—

HΣL
Α

Figure 7. A typical damage profile in an inner localization zone and in a boundary localization zone when
0 < σ < σc

11.2. Dependency of the damage profile on the overall stress

The maximal value of damage depends only on σ and enjoys the following property:

Property 11.2 (Variation of the maximal value of the damage with the stress). When σ
decreases from σc to 0, the maximal value ᾱ(σ) taken by the damage field at the center of a
localization zone increases from 0 to 1.

Proof. Let 0 < σ1 < σ2 < σc. Since 0 = F(σ1, ᾱ(σ1)) = F(σ2, ᾱ(σ2)) < F(σ1, ᾱ(σ2)), and since
F(σ1, β) < 0 when ᾱ(σ1) < β < 1, we have ᾱ(σ1) > ᾱ(σ2). Hence σ 7→ ᾱ(σ) is decreasing.

Let us prove that ᾱ0 := limσ→σc ᾱ(σ) = 0. The limit exists and is non-negative because
σ 7→ ᾱ(σ) is monotone and positive on (0, σc). Passing to the limit in F(σ, ᾱ(σ)) = 0 when σ
goes to 0 gives F(σc, ᾱ0) = 0. Since F(σc, 0) = 0 and ∂F/∂β(σc, β) < 0 for β > 0, we can conclude
that ᾱ0 = 0.
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Let us prove that ᾱ1 := limσ→0 ᾱ(σ) = 1. The limit exists and belongs to (0, 1] because ᾱ(σ)
is decreasing and belongs to (0, 1). If ᾱ1 < 1, passing to the limit in F(σ, ᾱ(σ)) = 0 when σ goes
to 0 gives 0 = F(0, ᾱ1) = 2w(ᾱ1), a contradiction. Hence ᾱ1 = 1. 2

Let us consider the limiting cases σ = σc or σ = 0, i.e. the onset of the damage localization
and the moment at which the bar breaks.

Case σ = σc. In such a case, the differential system (120)-(121) governing the damage profile
in a damage localization zone becomes

−σc2S′(α) + 2w′(α)− 2w1`
2α′′ = 0 in Si, α = α′ = 0 on ∂Si.

Integrating the differential equation over Si and using the boundary conditions lead to

σc
2

∫
Si
S′(α)dx = 2

∫
Si
w′(α)dx.

But, by Hypothesis 1, since σc
2S′(α) ≤ 2w′(α) for all α ∈ [0, 1] and since the equality holds if

and only if α = 0, the unique solution of the differential equation is α(x) = 0 for all x. This is
in agreement with the previous analysis where it was shown that the amplitude of the damage
profile tends to 0 when σ goes to σc. It means that the onset of the damage localization process
is progressive as a function of the overall stress. To find the shape of the damage profile when
σ is close to σc, one way is to expand the solution (127)-(128) in terms of the small parameter
σc

2− σ2. This requires a careful analysis of the behavior of the integrals when σ goes to σc. One
can show for instance that limσ↑σc D(σ) = Dc > 0 whereas limσ↑σc ᾱ(σ) = 0. This means that
the onset of damage localization is of small amplitude but occurs in a zone of finite length. This
result can be obtained directly by considering the bifurcation equation. Let us follow this latter
way as it is customary in bifurcation problems.

Specifically, since we are seeking for small damage fields for σ close to σc, one linearizes the
differential equation (120) which becomes

α > 0 and (σc
2S′′(0)−2w′′(0))α+2w1`

2α′′ = (σc
2−σ2)S′(0) in Si = (xi−Dc, xi+Dc)

(129)
the boundary conditions remaining unchanged. To obtain (129) we have taken into account that
S′(0)σc

2 = 2w′(0). This is the desired bifurcation equation. Then by standard arguments and
after easy calculations which are left to the reader, one gets

α(x) =
2S′(0)(σc

2 − σ2)

σc2S′′(0)− 2w′′(0)
cos2 π(x− xi)

2Dc
, Dc = π`

√
2w1

σc2S′′(0)− 2w′′(0)
. (130)

One has thus obtained the following property:

Property 11.3 (The onset of a damage localization process). A localization of damage can
occur when the stress has reached the critical value σc given by (116). Damage then appears in
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one (or several) zones of finite size whose half-length Dc is given by (130), with a profile which
is approximately a sinusoid whose amplitude progressively increases when the stress decreases,
see (130).

Note that this value of Dc is the same as in (118), which simply means that Dc is the minimal
length of the bar for which one can construct a non-homogeneous solution at the end of the elastic
phase. The localized solution which requires less space is of course the one which starts at one
boundary, its size being half of the size of an inner localization zone, see Remark 10.

Example 6. In the case of the family of models of Example 5, the half-length of the damage
zone and the amplitude of the damage profile at the onset of damage are given by

ᾱ(σ) =
2

p+ q

(
1− σ2

σc2

)
, Dc =

√
2

(p+ q)q

π`

εc
.

Case σ = 0. In this case, our previous construction of the damage profile is not valid. Indeed,
the differential system (120)-(121) becomes

α > 0 and w′(α)− E0`
2α′′ = 0 in Si, α = α′ = 0 on ∂Si.

Integrating the differential equation over Si and using the boundary conditions leads to
∫
Si w

′(α)dx =
0, which is impossible by Hypothesis 1. As suggested by the fact that the maximal value of
damage tends to 1 when σ goes to 0, one has to search for profile such that the damage field
takes the value 1 at the center of the zone. Since some quantities like the compliance function
α 7→ S(α) and its derivatives become infinite when α goes to 1, the regularity of the damage
field is lost and α′(x) is no more defined at x = xi but undergoes a jump discontinuity. So the
differential system now reads

α > 0 and w′(α)− E0`
2α′′ = 0 in Si \ xi, α(xi) = 1, α = α′ = 0 on ∂Si.

Multiplying by α′ the differential equation valid on each half-zone and taking into account the
boundary conditions at the ends, one still obtains a first integral w1`

2α′(x)2 = 2w(α(x)) in
Si \xi. Since α > 0 in Si, denoting by D0 the half-length of the localization zone, one necessarily
has

`α′ =

{
+
√

2w(α)/w1 in (xi −D0, xi)

−
√

2w(α)/w1 in (xi, xi +D0).

Since α(xi) = 1, the jump of α′ at xi is equal to −2
√

2S0w(1)/`. By integration, we obtain the
damage profile and the half-length of the localization zone:

|x− xi| = `

∫ 1

α

dβ√
2w(β)/w1

, D0 = `

∫ 1

0

dα√
2w(α)/w1

. (131)

One can remark that this solution can be obtained formally by taking σ = 0 and ᾱ(0) = 1 in
(127)-(128). We have proved the following
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Property 11.4 (Rupture of the bar at the center of a localization zone). At the end of the
damage process, when the stress has decreased to 0, the damage takes the critical value 1 at the
center of the localized damage zone. The damage profile and the half length D0 of the damage
zone are then given by (131). The profile is still symmetric and continuously decreasing to 0
from the center to the boundary, but its slope is discontinuous at the center.

Example 7. In the cases of the family of models of Example 5, the half-length of the damage
zone and the amplitude of the damage profile when the bar breaks are given by

|x− xi| =
`

εc

√
p

q

∫ 1−α

0

dv√
1− vp , D0 =

`

εc

√
p

q

∫ 1

0

dv√
1− vp .

For p = 1, the profile is made of two symmetric arcs of parabola:

α(x) =

(
1− |x− xi|

D0

)2

, D0 =
2`

εc
√
q
.

For p = 2, the profile is made of two symmetric arcs of sinusoid:

α(x) = 1− sin
π|x− xi|

2D0
, D0 =

π`

εc
√

2q
.

The greater p is, the greater the size of the damage zone and the damage field, see Figure 8.

�1.5 �1.0 �0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

α

εc

�
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Figure 8. Damage profile in the localization zone when the bar breaks, for q = 4 and different values of the
parameter p (p = 1/2, 1, 2, 4) in the family of brittle materials of Example 5

As we will see in the next subsection, the growth of the localization damage zone when
the stress decreases is essential in order to satisfy the irreversibility condition. However, if we
compare the size of the damage zone at the onset of damage with its size when the bar breaks,
i.e. if we compare Dc with D0, it is not clear whether D0 ≥ Dc. If we consider, for instance, the
family of models of Example 5 one has

D0

Dc
=

√
p(p+ q)Ip

π
√

2
, Ip =

∫ 1

0

dv√
1− vp .
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Since q ≥ p > 0, the inequality D0 ≥ Dc holds only if pIp ≥ π. But, since pIp is an increasing
function of p which is equal to π when p = 2, one has D0 ≥ Dc if and only if p ≥ 2. If we plot
the graph of σ 7→ D(σ) for different values of the parameters, one sees that D(σ) is a decreasing
function of σ only for large enough values of the parameters p and q, see Figure 9. So, the

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4 εcD

�

σ

σc

p = 1/2, q = 1

p = 2, q = 2

p = 2, q = 4

Figure 9. Evolution of the half-length of the damage zone as a function of the stress for three models of the family
of brittle materials of Example 5: for p = 1/2 and q = 2, D decreases all along the damage process; for p = q = 2,
D remains constant; for p = 2 and q = 4, D increases all along the damage process.

monotonicity of σ 7→ D(σ) is a material property which depends only on the two state functions
α 7→ E(α) and α 7→ w(α). Note that the value of the internal length does not play a role. Since
the study of the general case is quite difficult, we will merely establish a sufficient condition for
the monotonicity of σ 7→ D(σ) in the case of perfectly brittle materials.

Property 11.5 (Variation of the size of a localization zone with the stress.). For perfectly
brittle materials in the sense of Hypothesis 2, if α 7→

√
E(α) is convex, then σ 7→ D(σ) is non

increasing. In particular, this condition is satisfied in the family of models of Example 5 when
p = q ≥ 2.

Proof. Let us consider a perfectly brittle material and set σc = E0εc, S0 = 1/E0. For
σ ∈ (0, σc), the function F defined in (124) now reads

F(σ, α) = S0

(
S0σc

2E(α)− σ2
) 1− S0E(α)

E(α)
, α ∈ [0, 1).

The maximal value ᾱ(σ) of the damage is hence given by

ᾱ(σ) = E−1

(
σ2

σc2
E0

)
.

Inserting into the definition of D(σ) yields

D(σ) = `

∫ ᾱ(σ)

0

√
E0E(α)

(S0σc2E(α)− σ2) (1− S0E(α))
dα.
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Let us consider the change of variable α 7→ θ at given σ:

S0E(α) = 1− θ + θ
σ2

σc2
.

θ increases from 0 to 1 when α increases from 0 to ᾱ(σ). Making this change of variable in the
integral giving D(σ) yields

D(σ) =
`

2εc

∫ 1

0

dθ

|Φ′(α)|
√
θ(1− θ)

,

where Φ stands for the function α 7→ Φ(α) :=
√
S0E(α) and Φ′(α) is the derivative of Φ at

α. If α 7→
√
E(α) is convex, then Φ′ is a non-decreasing function of α. Since E is a decreasing

function of α, so is Φ and |Φ′(α)| = −Φ′(α). Hence |Φ′(α)| is a non increasing function of α.
Since α is a decreasing function of σ at given θ ∈ (0, 1), |Φ′(α)| is a non-decreasing function of
σ at given θ. Accordingly D is a non-increasing function of σ.

In the case of Example 5, the material is perfectly brittle when p = q > 0 and then E(α) =
E0(1−α)p. Hence, α 7→

√
E(α) is convex when p ≥ 2. Note that when p = 2, a straightforward

calculation gives

D(σ) =
π`

2εc
,

and hence the size of the localization zone remains fixed all along the damage process. 2

εc

�
(x − xi)
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Figure 10. The damage profile for a given t and its evolution with t by assuming that t 7→ σt is decreasing in the
case of the model of Example 5 with p = 2 and q = 4. The rupture occurs when σt = 0 and ᾱ(σt) = 1. We check
numerically that σ 7→ D(σ) is decreasing, see Figure 9.
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11.3. Checking the irreversibility

It remains to check that the localized damage fields that we have constructed at different values
of σ lead to an evolution in time which satisfies the irreversibility condition α̇ ≥ 0. Let us
reintroduce the time and the index t in the notation. Since the center of the localization zone is
fixed, the condition of irreversibility is satisfied only if t 7→ ᾱ(σt) = αt(xi) is non-decreasing. Since
σ 7→ ᾱ(σ) is decreasing, this is possible only if t 7→ σt is non-increasing. Since αt(xi, xi+D(σt)) =
0 and since αt(x) > 0 for |x − xi| < D(σt) by construction, the condition of irreversibility is
satisfied only if t 7→ D(σt) is non decreasing. This requires that σ 7→ D(σ) is non increasing,
condition which is not automatically satisfied by the damage model, see Figure 9. When this
condition is not satisfied, our construction of localized solutions is no more valid. We must
consider an evolution of the damage where a part of the localization zone reenters in a non
damaging phase, the size of the still damaging part decreasing with time. To avoid such a
situation we make the following hypothesis:

Hypothesis 3. We assume that α 7→ E(α) and α 7→ w(α) are such that σ 7→ D(σ) is non
increasing.

Note that this hypothesis is satisfied in the class of models of Example 5 when p = q ≥ 2 by
virtue of Property 11.5. Under this condition, it is possible to obtain the following property:

Property 11.6. Under Hypothesis 3, in order that t 7→ αt given by (128) in a localization
zone (and equals to 0 otherwise) is non-decreasing, it is necessary and sufficient that t 7→ σt is
non-increasing.

Proof. We know that it is necessary, it remains to prove that it is sufficient. Let us assume
that t 7→ σt is non increasing. Then t 7→ ᾱ(σt) and t 7→ D(σt) are non decreasing. Let t1 < t2
and x be such that |x− xi| ≤ D(σt1). It is sufficient to prove that α2 := αt2(x) ≥ αt1(x) =: α1.
Owing to (128), since F is a decreasing function of σ and since σt2 ≤ σt1 , we have

0 ≤ D(σt2)−D(σt1) =

∫ α2

0

` dβ√
F(σt2 , β)

−
∫ α1

0

` dβ√
F(σt1 , β)

≤
∫ α2

α1

` dβ√
F(σt1 , β)

.

Hence α2 ≥ α1. 2

By virtue of this last property, our construction of a non homogeneous solution is valid provided
that the bar is sufficiently long for a localization zone to appear and grow without reaching the
boundary. Since the size of the localization zone increases with t, that leads to the inequality
L ≥ 2D0. If we consider a non homogeneous solution which starts at one end, our construction
is valid provided that the localization zone does not reach the other end of the bar and hence
provided that L ≥ D0. Owing to (131), that gives the following lower bound for L:

L ≥ `
∫ 1

0

dα√
2w(α)/w1

. (132)
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Proposition 11.7 (A solution of the evolution problem with damage localization). Under
Hypotheses 1 and 3, we have constructed a damage evolution t 7→ αt which satisfies the evolution
problem PB 10.1 if the bar is long enough and if we can control the loading in such a manner
that the stress is continuously decreasing. A typical example of the evolution of the damage from
its onset to the rupture is given in Figure 10.

In the case where Hypothesis 3 is not satisfied, our construction is no more valid, the irre-
versibility condition is not satisfied because the size of the damage zone is decreasing. In such a
case, the construction of the solution must be refined. It is outside the scope of these Lectures.

11.4. Energy dissipated in a localization zone

By virtue of Property 10.2 and of (110) the energy dissipated in an inner localization zone when
the stress is σ is given by

Ed(σ) =

∫ xi+D(σ)

xi−D(σ)

(
1

2
w1`

2α′(x)2 + w(α(x))

)
dx.

By symmetry, it is twice the energy dissipated in a half-zone. Using the change of variable x→ α
and (123), we obtain

Ed(σ) = `

∫ ᾱ(σ)

0

4w(α)− σ2(S(α)− S0)√
2w(α)/w1 − σ2(S(α)− S0)/w1

dα. (133)

It is easy to check that σ 7→ Ed(σ) is decreasing with Ed(σc) = 0, while Ed(0) represents the
energy dissipated in a localization zone during the process of damage up to rupture. Let us call
fracture energy and denote by Gc this energy by reference to the Griffith surface energy density
in Griffith’s theory of fracture. Since ᾱ(0) = 1, we have

Property 11.8 (Fracture energy). The energy dissipated in an inner localization zone during
the damage process up to rupture is a material constant Gc which is given by

Gc = `

∫ 1

0

√
8w(α)/w1dα. (134)

Because of the lack of constraint on the damage at the boundary, the dissipated energy in a
boundary localization zone up to the rupture is Gc/2.

Example 8. In the case of the family of strongly brittle materials of Example 5, the fracture
energy is given by

Gc = 2Jp

√
q

p
σc`, Jp =

∫ 1

0

√
1− vp dv. (135)

Thus Gc is proportional to the product of the critical stress by the internal length, the coefficient
of proportionality depending on the exponents p and q. This link between surface fracture energy,
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critical stress and internal length is quite similar to the link between the analogous quantities
in cohesive force models, see (Charlotte et al., 2000; Marigo and Truskinovsky, 2004). More
generally, cohesive force models and gradient damage models have very similar properties. Both
can be seen as regularization of Griffith’s model in fracture mechanics, with in each case the
great advantage (by comparison to Griffith’s model)of containing a critical stress and an internal
length. A more fundamental comparison of these two regularized models deserves to be made.
The interested reader can refer to (Lorentz et al., 2011) for a first interesting attempt in this
direction.

12. Concluding remarks

The solution of the evolution problem is characterized by the competition between two funda-
mental damage modes: solutions homogeneous in space and solutions with damage localization.
The study of their properties is fundamental to have a qualitative understanding of an evolution
problem. We focused on a class of damage models characterized by a finite elastic limit and
stress-softening. In this case, for sufficiently long bars, bifurcation from the homogeneous solution
toward a localized appears as soon as the stress reaches the elastic limit

σc =

√
2w′(0)

S′(0)
. (136)

We studied the evolution of the bifurcated branch until the complete failure of the bar, which
is obtained when the maximum value of the damage field reaches 1. The fully localized solution
is characterized by a localization width D0 and a dissipated energy Gc given by:

D0 = c1/w `, , Gc = cw w1 `. (137)

where c1/w and cw are two dimensionless constants defined by

c1/w :=
√

2

∫ 1

0

√
w1

w(α)
dα, cw = 2

√
2

∫ 1

0

√
w(α)

w1
dα (138)

The original expression of the energy density (84) was written taking as reference value for the
dissipation the energy dissipated per unit length in a uniform solution, w1. On the contrary the
characteristic dissipation per unit length in a localized solution is Gc = cw w1 `/L, where L is the
length of the bar. Evidently, for small values of `/L, damage localization is a convenient failure
mode. Indeed solutions with homogeneous non null damage are unstable for long bars. If one
want to focus on the failure induced by localized solutions, it is convenient to use equation (137)
to rewrite the energy density in the following form, where Gc appears as independent variable
instead of w1

W(ε, α, α′) =
1

2
E(α)ε2 +

Gc
cw

(
w(α)

w1`
+
` α′2

2

)
. (139)
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This form of the energy density underlines the links between the damage and brittle fracture.
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